Giải bài 4.25 trang 70 SGK Toán 10 Kết nối tri thức tập 1
Chứng minh rằng với mọi tam giác ABC, ta có:
\({S_{ABC}} = \frac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\)
Hướng dẫn giải chi tiết
Phương pháp giải
Biến đổi vế trái, đưa về công thức \({S_{ABC}} = \dfrac{1}{2}bc.\sin A\)
+) \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
+) \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha \) với mọi \(\alpha \).
Hướng dẫn giải
Đặt \(A = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} \)
\(\begin{array}{l} \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - {{\left( {AB.AC.\cos A} \right)}^2}} \\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}\left( {1 - {{\cos }^2}A} \right)} \end{array}\)
Mà \(1 - {\cos ^2}A = {\sin ^2}A\)
\( \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}.{{\sin }^2}A} \)
\( \Leftrightarrow A = \dfrac{1}{2}.AB.AC.\sin A\) (Vì \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\))
Do đó \(A = {S_{ABC}}\) hay \({S_{ABC}} = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\) (đpcm)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4.23 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.24 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.26 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.29 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.30 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.31 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.32 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.33 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.34 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.35 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.36 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.38 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT