Hoạt động 4 trang 68 SGK Toán 10 Kết nối tri thức tập 1
Cho ba vectơ \(\overrightarrow u = ({x_1};{y_1}),\;\overrightarrow v = ({x_2};{y_2}),\;\overrightarrow w = ({x_3};{y_3}).\)
a) Tính \(\overrightarrow u .\left( {\overrightarrow v + \overrightarrow w } \right),\;\overrightarrow u .\overrightarrow v + \overrightarrow u .\overrightarrow w \) theo tọa độ của các vectơ \(\overrightarrow u ,\overrightarrow v ,\overrightarrow w .\)
b) So sánh \(\overrightarrow u .\left( {\overrightarrow v + \overrightarrow w } \right)\) và \(\;\overrightarrow u .\overrightarrow v + \overrightarrow u .\overrightarrow w \)
c) So sánh \(\;\overrightarrow u .\overrightarrow v \) và \(\overrightarrow v .\overrightarrow u \)
Hướng dẫn giải chi tiết
Phương pháp giải
Cho \(\overrightarrow u = \left( {x;y} \right)\) và \(\overrightarrow v = \left( {x';y'} \right)\), khi đó: \(\overrightarrow u .\overrightarrow v = x.x' + y.y'\)
Hướng dẫn giải
a) Ta có: \(\overrightarrow u = ({x_1};{y_1}),\;\overrightarrow v = ({x_2};{y_2}),\;\overrightarrow w = ({x_3};{y_3}).\)
\(\begin{array}{l} \Rightarrow \overrightarrow v + \overrightarrow w = ({x_2};{y_2}) + ({x_3};{y_3}) = \left( {{x_2} + {x_3};{y_2} + {y_3}} \right)\\ \Rightarrow \overrightarrow u .\left( {\overrightarrow v + \overrightarrow w } \right) = {x_1}.\left( {{x_2} + {x_3}} \right) + {y_1}.\left( {{y_2} + {y_3}} \right)\end{array}\)
Và: \(\;\overrightarrow u .\overrightarrow v + \overrightarrow u .\overrightarrow w = \left( {{x_1}.{x_2} + {y_1}.{y_2}} \right) + \left( {{x_1}.{x_3} + {y_1}.{y_3}} \right)\)\( = {x_1}.{x_2} + {y_1}.{y_2} + {x_1}.{x_3} + {y_1}.{y_3}.\)
b) Vì \({x_1}.{x_2} + {y_1}.{y_2} + {x_1}.{x_3} + {y_1}.{y_3}\)\( = \left( {{x_1}.{x_2} + {x_1}.{x_3}} \right) + \left( {{y_1}.{y_2} + {y_1}.{y_3}} \right)\)\( = {x_1}.\left( {{x_2} + {x_3}} \right) + {y_1}.\left( {{y_2} + {y_3}} \right)\)
Nên \(\overrightarrow u .\left( {\overrightarrow v + \overrightarrow w } \right) = \;\overrightarrow u .\overrightarrow v + \overrightarrow u .\overrightarrow w \)
c) Ta có: \(\overrightarrow u = ({x_1};{y_1}),\;\overrightarrow v = ({x_2};{y_2})\)
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2}\\\overrightarrow v .\overrightarrow u = {x_2}.{x_1} + {y_2}.{y_1}\end{array} \right.\)\( \Leftrightarrow \;\overrightarrow u .\overrightarrow v = \overrightarrow v .\overrightarrow u \)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 3 trang 68 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Luyện tập 4 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Vận dụng trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.21 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.22 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.23 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.24 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.25 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.26 trang 70 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.29 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.30 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.31 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.32 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.33 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.34 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.35 trang 65 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.36 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.38 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT