YOMEDIA
NONE

Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A( - 3;2),\,\,B(1;5)\) và \(C(3; - 1).\)

a)  Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm \(G\) của tam giác ấy.

b) Tìm tọa độ trực tâm \(H\) của tam giác \(ABC.\)

c) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Tìm tọa độ của \(I.\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 4.37

Phương pháp giải

a) Ta có: \(\overrightarrow {AB}  = (4;3)\) và \(\overrightarrow {AC}  = (6; - 3)\)

Gọi \(G\) là trọng tâm của \(\Delta ABC\). Tính toạ độ điểm G

b) Gọi \(H(x;y)\) là trực tâm của \(\Delta ABC\). Tìm toạ độ điểm H

c) Gọi \(I(x;y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Tìm toạ độ điểm I

Lời giải chi tiết

a) Ta có: \(\overrightarrow {AB}  = (4;3)\) và \(\overrightarrow {AC}  = (6; - 3)\)

\( \Rightarrow \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) không thẳng hàng

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác.

Gọi \(G\) là trọng tâm của \(\Delta ABC\)

\( \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{ - 3 + 1 + 3}}{3} = \frac{1}{3}}\\{y = \frac{{2 + 5 - 1}}{3} = 2}\end{array}} \right.\,\, \Leftrightarrow \,\,G\left( {\frac{1}{3};2} \right)\)

b) Gọi \(H(x;y)\) là trực tâm của \(\Delta ABC\)

Ta có: \(\overrightarrow {BH}  = (x - 1;y - 5)\) và \(\overrightarrow {CH}  = (x - 3;y + 1)\)

Do \(BH \bot AC\) và \(CH \bot AB\)

Nên \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {BH} .\overrightarrow {AC}  = 0}\\{\overrightarrow {CH} .\overrightarrow {AB}  = 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6\left( {x - 1} \right) - 3\left( {y - 5} \right) = 0}\\{4\left( {x - 3} \right) + 3\left( {y + 1} \right) = 0}\end{array}} \right.\)

\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{2x - y =  - 3}\\{4x + 3y = 9}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 3}\end{array}} \right.\)

Vậy \(H(0;3).\)

c) Gọi \(I(x;y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)

Ta có: \(\overrightarrow {IH}  = 3\overrightarrow {IG} \) \( \Leftrightarrow \) \(( - x;3 - y) = 3\left( {\frac{1}{3} - x;2 - y} \right) = \left( {1 - 3x;6 - 3y} \right)\)

\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{ - x = 1 - 3x}\\{3 - y = 6 - 3y}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{2}}\\{y = \frac{3}{2}}\end{array}} \right.\) 

Vậy \(I\left( {\frac{1}{2};\frac{3}{2}} \right)\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.37 trang 66 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON