YOMEDIA
NONE

Bài tập 110 trang 93 SBT Toán 8 Tập 1

Giải bài 110 tr 93 sách BT Toán lớp 8 Tập 1

Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt nhau tao thành một hình chữ nhật.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng: Tổng ba góc trong tam giác bằng \(180^0\)

Lời giải chi tiết

Giả sử ABCD là hình bình hành.

Gọi \(G,\, H,\, E, \,K\) lần lượt là giao điểm của các đường phân giác của \(\widehat A\) và \(\widehat B\); \(\widehat B\) và \(\widehat C\); \(\widehat C\) và \(\widehat D\); \(\widehat D\) và \(\widehat A\).

Ta có: \(\widehat {ADF} = \eqalign{1 \over 2}\widehat {ADC}\) (tính chất tia phân giác)

             \(\widehat {DAF} =\eqalign {1 \over 2}\widehat {DAB}\) (tính chất tia phân giác)

            \(\widehat {ADC} + \widehat {DAB} = {180^0}\) (hai góc trong cùng phía)

Suy ra: \(\widehat {ADF} + \widehat {DAF} = \eqalign{1 \over 2}\left( {\widehat {ADC} + \widehat {DAB}} \right)\) \(=\eqalign {1 \over 2}{.180^0} = {90^0}\)

Trong \(∆ AFD\) ta có: 

\(\widehat {AFD} = {180^0} - \left( {\widehat {ADF} + \widehat {DAF}} \right) \) \(= {180^0} - {90^0} = {90^0}\)

\(\widehat {EFG} = \widehat {AFD}\) (đối đỉnh)

\(\eqalign{  &  \Rightarrow \widehat {EFG} = {90^0}  \cr  & \widehat {GAB} = \eqalign{1 \over 2}\widehat {DAB}(gt)  \cr  & \widehat {GBA} = {1 \over 2}\widehat {CBA}(gt) \cr} \)

\(\widehat {DAB} + \widehat {CBA} = {180^0}\) (hai góc trong cùng phía)

\( \Rightarrow \widehat {GBA} + \widehat {GAB}\) \(= \eqalign{1 \over 2}\left( {\widehat {DAB} + \widehat {CBA}} \right)\) \(= \eqalign{1 \over 2}{.180^0} = {90^0}\)

Trong \(∆ AGB\) ta có: \(\widehat {AGB} = {180^0} - \left( {\widehat {GAB} + \widehat {GBA}} \right) \) \(= {180^0} - {90^0} = {90^0}\)

hay \(\widehat G = {90^0}\)

\(\eqalign{  & \widehat {EDC} = \eqalign{1 \over 2}\widehat {ADC}(gt)  \cr  & \widehat {ECD} =\eqalign {1 \over 2}\widehat {BCD}(gt) \cr} \)

\(\widehat {ADC} + \widehat {BCD} = {180^0}\) (hai góc trong cùng phía)

\( \Rightarrow \widehat {EDC} + \widehat {ECD} \) \(= \eqalign{1 \over 2}\left( {\widehat {ADC} + \widehat {BCD}} \right) \) \(= \eqalign{1 \over 2}{.180^0} = {90^0}\)

Trong \(∆ EDC\) ta có: \(\widehat {DEC} = {180^0} - \left( {\widehat {EDC} + \widehat {ECD}} \right)\) \(= {180^0} - {90^0} = {90^0}\) hay \(\widehat E = {90^0}\)

Vậy tứ giác EFGH là hình chữ nhật (vì có ba góc vuông).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 110 trang 93 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON