YOMEDIA
NONE

Bài tập 123 trang 95 SBT Toán 8 Tập 1

Giải bài 123 tr 95 sách BT Toán lớp 8 Tập 1

Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM.

a. Chứng minh rằng \(\widehat {HAB} = \widehat {MAC}\)

b. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. Chứng minh rằng AM vuông góc với DE.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Hình tứ giác có ba góc vuông là hình chữ nhật.

Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy

Lời giải chi tiết

a. AH ⊥ BC (gt) \( \Rightarrow \widehat {HAB} + \widehat B = {90^0}\)

\(\widehat B + \widehat C = {90^0}\) (vì ∆ ABC có\(\widehat A = {90^0}\))

Suy ra: \(\widehat {HAB} = \widehat C\) (1)

∆ ABC vuông tại A có AM là trung tuyến thuộc cạnh huyền BC

⇒ AM = MC = \({1 \over 2}\) BC (tính chất tam giác vuông)

⇒ ∆ MAC cân tại M \( \Rightarrow \widehat {MAC} = \widehat C\) (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: \(\widehat {HAB} = \widehat {MAC}\)

b. xét tứ giác ADHE có:

\(\widehat A = {90^0}\) (gt)

\(\widehat {ADH} = {90^0}\) (vì HD ⊥ AB)

\(\widehat {AEH} = {90^0}\) (vì HE ⊥ AC)

Suy ra: Tứ giác ADHE là hình chữ nhật (vì có ba góc vuông)

⇒ ∆ ADH = ∆ EHD (c.c.c)

\( \Rightarrow {\widehat A_1} = \widehat {HED}\)

\(\widehat {HED} + {\widehat E_1} = \widehat {HEA} = {90^0}\)

Suy ra: \({\widehat E_1} + {\widehat A_1} = {90^0}\)

              \({\widehat A_1} = {\widehat A_2}\) (chứng minh trên)

 \( \Rightarrow {\widehat E_1} + {\widehat A_2} = {90^0}\)

Gọi I là giao điểm của AM và DE

Trong ∆ AIE ta có:

\(\widehat {AIE} = {180^0} - \left( {{{\widehat E}_1} + {{\widehat A}_1}} \right) = {180^0} - {90^0} = {90^0}\)

\(\Rightarrow \)AM ⊥ DE.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 123 trang 95 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON