YOMEDIA
NONE

Bài tập 119 trang 94 SBT Toán 8 Tập 1

Giải bài 119 tr 94 sách BT Toán lớp 8 Tập 1

Cho tam giác ABC, đường cao AH. Gọi D, E, M theo thứ tự là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác DEMH là hình thang cân.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng kiến thức:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

+) Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Lời giải chi tiết

Vì D là trung điểm của AB (gt)

E là trung điểm của AC (gt)

nên DE là đường trung bình của tam giác ABC

⇒ DE // BC hay DE = HM

Suy ra: Tứ giác DEMH là hình thang

M là trung điểm của BC (gt)

nên DM là đường trung bình của ∆ BAC

⇒ DM = \({1 \over 2}\)AC (tính chất đường trung bình của tam giác) (1)

Trong tam giác vuông AHC có\(\widehat {AHC} = {90^0}\).

 HE là đường trung tuyến thuộc cạnh huyền AC.

⇒ HE = \({1 \over 2}\)AC (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: DM = HE

Vậy hình thang DEMH là hình thang cân (vì có hai đường chéo bằng nhau)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 119 trang 94 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON