YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = {x^3} - 3x + 2{\rm{ }}\left( C \right)\). Biết rằng đường thẳng d: y =ax + b cắt đồ thị (C) tại ba điểm phân biệt M, N, P. Tiếp tuyến tại ba điểm M, N, P của đồ thị (C) cắt (C) tại các điểm M', N', P', (tương ứng khác M, N, P). Khi đó đường thẳng đi qua ba điểm  M', N', P' có phương trình là

    • A. \(y = \left( {4a + 9} \right)x + 18 - 8b\)
    • B. \(y = \left( {4a + 9} \right)x + 14 - 8b\)
    • C. y = ax + b
    • D. \(y =  - \left( {8a + 18} \right)x + 18 - 8b\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Giả sử \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right),C\left( {{x_3};{y_3}} \right)\). Ta có phương trình tiếp tuyến tại A của đồ thị (C) là \({\Delta _1}:y = \left( {3x_1^2 - 3} \right)\left( {x - {x_1}} \right) + x_1^3 - 3{x_1} + 2\) 

    Xét phương trình hoành độ giao điểm của đồ thị (C) và \({\Delta _1}\) là

    \(\left( {3x_1^2 - 3} \right)\left( {x - {x_1}} \right) + x_1^3 - 3{x_1} + 2 = {x_3} - x + 2 \Leftrightarrow {\left( {x - {x_1}} \right)^2}\left( {x + 2{x_1}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
    x = {x_1}\\
    x =  - 2{x_1}
    \end{array} \right.\) 

    Do đó \(A'\left( { - 2{x_1}; - 8x_1^3 + 6{x_1} + 2} \right)\) 

    Lại có \( - 8x_1^3 + 6{x_1} + 2 =  - 8\left( {x_1^3 - 3{x_1} + 2} \right) - 18{x_1} + 18 =  - 8\left( {a{x_1} + b} \right) - 18{x_1} + 18\) 

    \( =  - 8\left( {a{x_1} + b} \right) - 18{x_1} + 18 =  - 2{x_1}\left( {4a + 9} \right) + 18 - 8b\) 

    Khi đó \({y_{A'}} = {x_{A'}}\left( {4a + 9} \right) + 18 - 8b\) 

    Vậy phương trình đường thẳng đi qua 3 điểm A', B', C' là \(y = x\left( {4a + 9} \right) + 18 - 8b\) 

    ATNETWORK

Mã câu hỏi: 87324

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON