Phần hướng dẫn giải bài tập SGK Toán 9 Chương 4 Bài 6 Hệ thức Vi-ét và ứng dụng sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các dạng bài tập từ SGK Toán 9.
-
Bài tập 25 trang 52 SGK Toán 9 Tập 2
Đối với phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chố trống (..):
\(\small a) 2x^2-17x+1=0;\Delta=...;x_1+x_2=...;x_1.x_2=...\)
\(\small b) 5x^2-x-35=0;\Delta=...;x_1+x_2=...;x_1.x_2=...\)
\(\small c) 8x^2-x+1=0;\Delta=...;x_1+x_2=...;x_1.x_2=...\)
\(\small d) 25x^2+10x+1=0;\Delta=...;x_1+x_2=...;x_1.x_2=...\)
-
Bài tập 26 trang 53 SGK Toán 9 Tập 2
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
a) 35x2 – 37x + 2 = 0
b) 7x2 + 500x – 507 = 0
c) x2 – 49x - 50 = 0
d) 4321x2 + 21x – 4300 = 0
-
Bài tập 27 trang 53 SGK Toán 9 Tập 2
Dùng hệ thức Vi-ét để tính nhẩm các nghiệm của phương trình.
a) x2 – 7x + 12 = 0
b) x2 + 7x + 12 = 0
-
Bài tập 28 trang 53 SGK Toán 9 Tập 2
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 32, uv = 231
b) u + v = -8, uv = -105
c) u + v = 2, uv = 9
-
Bài tập 29 trang 54 SGK Toán 9 Tập 2
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:
a) 4x2 + 2x – 5 = 0
b) 9x2 – 12x + 4 = 0
c) 5x2 + x + 2 = 0
d) 159x2 – 2x – 1 = 0
-
Bài tập 30 trang 54 SGK Toán 9 Tập 2
Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.
a) x2 – 2x + m = 0
b) x2 – 2(m – 1)x + m2 = 0
-
Bài tập 31 trang 54 SGK Toán 9 Tập 2
Tính nhẩm nghiệm của các phương trình:
a) \(1,5x^2 - 1,6x + 0,1 = 0\)
b) \(\sqrt{3}x^2 - (1 - \sqrt{3})x - 1 = 0\)
c) \((2 - \sqrt{3})x^2 + 2\sqrt{3}x - (2 + \sqrt{3}) = 0\)
d) \((m - 1)x^2 - (2m + 3)x + m + 4 = 0\) với \(m \neq 1\)
-
Bài tập 32 trang 54 SGK Toán 9 Tập 2
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 42, uv = 441
b) u + v = -42, uv = -400
c) u – v = 5, uv = 24
-
Bài tập 33 trang 54 SGK Toán 9 Tập 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a(x – x1)(x – x2).
Áp dụng. Phân tích đa thức thành nhân tử.
a) 2x2 – 5x + 3;
b) 3x2 + 8x + 2.
-
Bài tập 35 trang 57 SBT Toán 9 Tập 2
Giải phương trình rồi kiểm nghiệm hệ thức Vi-ét:
a) \(3{x^2} - 2x - 5 = 0\)
b) \(5{x^2} + 2x - 16 = 0\)
c) \({1 \over 3}{x^2} + 2x - {{16} \over 3} = 0\)
d) \({1 \over 2}{x^2} - 3x + 2 = 0\)
-
Bài tập 36 trang 57 SBT Toán 9 Tập 2
Không giải phương trình, dùng hệ thức Vi-ét, hãy tính tổng và tích các nghiệm của mỗi phương trình:
a) \(2{x^2} - 7x + 2 = 0\)
b) \(2{x^2} + 9x + 7 = 0\)
c) \(\left( {2 - \sqrt 3 } \right){x^2} + 4x + 2 + \sqrt 2 = 0\)
d) \(1,4{x^2} - 3x + 1,2 = 0\)
e) \(5{x^2} + x + 2 = 0\)
-
Bài tập 37 trang 57 SBT Toán 9 Tập 2
Tính nhẩm nghiệm của phương trình:
a) \(7{x^2} - 9x + 2 = 0\)
b) \(23{x^2} - 9x - 32 = 0\)
c) \(1975{x^2} + 4x - 1979 = 0\)
d) \(\left( {5 + \sqrt 2 } \right){x^2} + \left( {5 - \sqrt 2 } \right)x - 10 = 0\)
e) \({1 \over 3}{x^2} - {3 \over 2}x - {{11} \over 6} = 0\)
f) \(31,1{x^2} - 50,9x + 19,8 = 0\)
-
Bài tập 38 trang 57 SBT Toán 9 Tập 2
Dùng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình:
a) \({x^2} - 6x + 8 = 0\)
b) \({x^2} - 12x + 32 = 0\)
c) \({x^2} + 6x + 8 = 0\)
d) \({x^2} - 3x - 10 = 0\)
e) \({x^2} + 3x - 10 = 0\)
-
Bài tập 39 trang 57 SBT Toán 9 Tập 2
a) Chứng tỏ rằng phương trình \(3{x^2} + 2x - 21 = 0\) có một nghiệm là -3. Hãy tìm nghiệm kia
b) Chứng tỏ rằng phương trình \( - 4{x^2} - 3x + 115 = 0\) có một nghiệm là 5. Tìm nghiệm kia
-
Bài tập 40 trang 57 SBT Toán 9 Tập 2
Dùng hệ thức Vi-ét để tìm nghiệm x2 của phương trình rồi tìm giá trị của m trong mỗi trường hợp sau:
a) Phương trình \({x^2} + mx - 35 = 0\), biết nghiệm x1 = 7
b) Phương trình \({x^2} - 13x + m = 0,\) biết nghiệm x1 = 12,5
c) Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0,\) biết nghiệm x1 = -2
d) Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0,\) biết nghiệm \({x_1} = {1 \over 3}\)
-
Bài tập 41 trang 58 SBT Toán 9 Tập 2
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 14; uv = 40
b) \(u + v = - 7;uv = 12\)
c) \(u + v = - 5;uv = - 24\)
d) \(u + v = 4,uv = 19\)
e) \(u - v = 10,uv = 24\)
f) \({u^2} + {v^2} = 85,uv = 18\)
-
Bài tập 42 trang 58 SBT Toán 9 Tập 2
Lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau:
a) 3 và 5;
b) -4 và 7;
c) -5 và \({1 \over 3}\);
d) 1,9 và 5,1;
e) 4 và \(1 - \sqrt 2 \);
f) \(3 - \sqrt 5 \) và \(3 + \sqrt 5 \)
-
Bài tập 43 trang 58 SBT Toán 9 Tập 2
Cho phương trình \({x^2} + px - 5 = 0\) có nghiệm là x1, x2. Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau:
a) –x1 và –x2
b) \({1 \over {{x_1}}}\) và \({1 \over {{x_2}}}\)
-
Bài tập 44 trang 58 SBT Toán 9 Tập 2
Cho phương trình \({x^2} - 6x + m = 0.\) Tính giá trị của \(m\), biết rằng phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn điều kiện \(x_1-x_2= 4.\)
-
Bài tập 6.1 trang 58 SBT Toán 9 Tập 2
Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\;(a \ne 0).\)
Điều nào sau đây đúng?
A) \(\displaystyle {x_1} + {x_2} = {b \over a},{x_1}{x_2} = {c \over a}\)
B) \(\displaystyle {x_1} + {x_2} = - {b \over a},{x_1}{x_2} = - {c \over a}\)
C) \(\displaystyle {x_1} + {x_2} = {b \over a},{x_1}{x_2} = - {c \over a}\)
D) \(\displaystyle {x_1} + {x_2} = - {b \over a},{x_1}{x_2} = {c \over a}\)
-
Bài tập 6.1 trang 58 SBT Toán 9 Tập 2
Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \({x^2} + px + q = 0.\) Hãy lập một phương trình bậc hai có hai nghiệm \(x_1+x_2;x_1x_2\)
-
Bài tập 6.3 trang 58 SBT Toán 9 Tập 2
Dùng định lí Vi-ét, hãy chứng tỏ rằng nếu tam thức \(a{x^2} + bx + c\) có hai nghiệm \(x_1\) và \(x_2\) thì nó phân tích được thành
\(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\)
Áp dụng:
Phân tích các tam thức sau thành tích:
a) \({x^2} - 11x + 30\)
b) \(3{x^2} + 14x + 8\)
c) \(5{x^2} + 8x - 4\)
d) \({x^2} - \left( {1 + 2\sqrt 3 } \right)x - 3 + \sqrt 3 \)
-
Bài tập 6.4 trang 59 SBT Toán 9 Tập 2
Cho phương trình
\(\left( {2m - 1} \right){x^2} - 2\left( {m + 4} \right)x + 5m + 2\)\(\, = 0\;\displaystyle (m \ne {1 \over 2}).\)
a) Tìm giá trị của \(m\) để phương trình có nghiệm.
b) Khi phương trình có nghiệm \(x_1,x_2\), hãy tính tổng \(S\) và tích \(P\) của hai nghiệm theo \(m.\)
c) Tìm hệ thức giữa \(S\) và \(P\) sao cho trong hệ thức này không có \(m.\)