YOMEDIA
NONE

Bài tập 37 trang 57 SBT Toán 9 Tập 2

Giải bài 37 tr 57 sách BT Toán lớp 9 Tập 2

Tính nhẩm nghiệm của phương trình:

a) \(7{x^2} - 9x + 2 = 0\)

b) \(23{x^2} - 9x - 32 = 0\)

c) \(1975{x^2} + 4x - 1979 = 0\)

d) \(\left( {5 + \sqrt 2 } \right){x^2} + \left( {5 - \sqrt 2 } \right)x - 10 = 0\)

e) \({1 \over 3}{x^2} - {3 \over 2}x - {{11} \over 6} = 0\)

f) \(31,1{x^2} - 50,9x + 19,8 = 0\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Áp dụng:

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}=\dfrac{c}{a}.\)

- Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\)  có \(a - b + c = 0\) thì phương trình có nghiệm là \({x_1}= -1\), còn nghiệm kia là \({x_2}=\dfrac{-c}{a}\).

Lời giải chi tiết

a) \(7{x^2} - 9x + 2 = 0\)

Ta có hệ số: a = 7, b = -9, c = 2

Phương trình có dạng: a + b + c = 0

\(\Rightarrow 7 + \left( { - 9} \right) + 2 = 0 \Rightarrow {x_1} = 1;{x_2} = {2 \over 7}\)

b) \(23{x^2} - 9x - 32 = 0\)

Ta có hệ số: a = 23, b = -9, c = -32

Phương trình có dạng: a – b + c = 0

\(\eqalign{
& \Rightarrow 23 - \left( { - 9} \right) + \left( { - 32} \right) = 23 + 9 - 32 = 0 \cr 
& {x_1} = - 1;{x_2} = - {{ - 32} \over {23}} = {{32} \over {23}} \cr} \)

c) \(1975{x^2} + 4x - 1979 = 0\)

Ta có hệ số: a = 1975, b = 4, c = -1979

Phương trình có dạng: \(a + b + c = 0\)

\(\eqalign{
& \Rightarrow 1975 + 4 + \left( { - 1979} \right) = 0 \cr 
& {x_1} = 1;{x_2} = {{ - 1979} \over {1975}} \cr} \)

d) \(\left( {5 + \sqrt 2 } \right){x^2} + \left( {5 - \sqrt 2 } \right)x - 10 = 0\)

Ta có hệ số \(a = 5 + \sqrt 2 ,b = 5 - \sqrt 2 ,c =  - 10\)

Phương trình có dạng: \(a + b + c = 0\)

\(\eqalign{
& \Rightarrow 5 + \sqrt 2 + 5 - \sqrt 2 + \left( { - 10} \right) = 0 \cr 
& {x_1} = 2;{x_2} = {{ - 10} \over {5 + \sqrt 2 }} = - {{10\left( {5 - \sqrt 2 } \right)} \over {23}} \cr} \)

e) \({1 \over 3}{x^2} - {3 \over 2}x - {{11} \over 6} = 0\)

Ta có hệ số: \(a = {1 \over 3},b =  - {3 \over 2},c =  - {{11} \over 6}\)

Phương trình có dạng: \(a - b + c = 0\)

\(\eqalign{
& \Rightarrow {1 \over 3} - \left( { - {3 \over 2}} \right) + \left( { - {{11} \over 6}} \right) = {1 \over 3} + {3 \over 2} - {{11} \over 6} = {2 \over 6} + {9 \over 6} - {{11} \over 6} = 0 \cr 
& {x_1} = 1;{x_2} = - {{ - 11} \over 6}:{1 \over 3} = {{11} \over 6}.{3 \over 1} = {{11} \over 2} \cr} \)

f) \(31,1{x^2} - 50,9x + 19,8 = 0\)

Ta có hệ số: a = 31,1; b = -50,9; c = 19,8

Phương trình có dạng: \(a + b + c = 0\)

\(\eqalign{
& \Rightarrow 31,1 + \left( { - 50,9} \right) + 19,8 = 0 \cr 
& {x_1} = 1;{x_2} = {{19,8} \over {31,1}} = {{198} \over {311}} \cr} \)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 37 trang 57 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON