YOMEDIA
NONE

Bài tập 18 trang 52 SBT Toán 9 Tập 2

Giải bài 18 tr 52 sách BT Toán lớp 9 Tập 2

Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:

a) \({x^2} - 6x + 5 = 0\)

b) \({x^2} - 3x - 7 = 0\)

c) \(3{x^2} - 12x + 1 = 0\)

d) \(3{x^2} - 6x + 5 = 0\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

+) Thêm bớt để xuất hiện hằng đẳng thức.

+) Sử dụng lý thuyết: \({f^2}\left( x \right) = a > 0 \Leftrightarrow f\left( x \right) =  \pm \sqrt a \)

Lời giải chi tiết

a) \({x^2} - 6x + 5 = 0 \Leftrightarrow {x^2} - 2.3x + 9 = 4 \Leftrightarrow {\left( {x - 3} \right)^2} = 4\)

\( \Leftrightarrow \left| {x - 3} \right| = 2\) \( \Leftrightarrow x - 3 = 2\) hoặc \(x - 3 =  - 2\)⇔ x = 5 hoặc x = 1

Vậy phương trình có hai nghiệm: \({x_1} = 5;{x_2} = 1\)

b)\({x^2} - 3x - 7 = 0 \Leftrightarrow {x^2} - 2.{3 \over 2}x + {9 \over 4} = 7 + {9 \over 4} \Leftrightarrow {\left( {x - {3 \over 2}} \right)^2} = {{37} \over 4}\)

\( \Leftrightarrow \left| {x - {3 \over 2}} \right| = {{\sqrt {37} } \over 2} \Leftrightarrow x - {3 \over 2} = {{\sqrt {37} } \over 2}\) hoặc \(x - {3 \over 2} =  - {{\sqrt {37} } \over 2}\)

\( \Leftrightarrow x = {{3 + \sqrt {37} } \over 2}\) hoặc \(x = {{3 - \sqrt {37} } \over 2}\)

Vậy phương trình có hai nghiệm: \({x_1} = {{3 + \sqrt {37} } \over 2};{x_2} = {{3 - \sqrt {37} } \over 2}\)

c)

\(\eqalign{
& 3{x^2} - 12x + 1 = 0 \Leftrightarrow {x^2} - 4x + {1 \over 3} = 0 \cr 
& \Leftrightarrow {x^2} - 2.2x + 4 = 4 - {1 \over 3} \cr 
& \Leftrightarrow {\left( {x - 2} \right)^2} = {{11} \over 3} \Leftrightarrow \left| {x - 2} \right| = {{\sqrt {33} } \over 3} \cr} \)

\( \Leftrightarrow x - 2 = {{\sqrt {33} } \over 3}\) hoặc \(x - 2 =  - {{\sqrt {33} } \over 3}\)

\( \Leftrightarrow x = 2 + {{\sqrt {33} } \over 3}\) hoặc \(x = 2 - {{\sqrt {33} } \over 3}\)

Vậy phương trình có hai nghiệm: \({x_1} = 2 + {{\sqrt {33} } \over 3};{x_2} = 2 - {{\sqrt {33} } \over 3}\)

d)

\(\eqalign{
& 3{x^2} - 6x + 5 = 0 \Leftrightarrow {x^2} - 2x + {5 \over 3} = 0 \cr 
& \Leftrightarrow {x^2} - 2x + 1 = 1 - {5 \over 3} \cr 
& \Leftrightarrow {\left( {x - 1} \right)^2} = - {2 \over 3} \cr} \)

Vế trái \({\left( {x - 1} \right)^2} \ge 0\); vế phải \( - {2 \over 3} < 0\)

Vậy không có giá trị nào của x để \({\left( {x - 1} \right)^2} =  - {2 \over 3}\)

Phương trình vô nghiệm. 

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 18 trang 52 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON