YOMEDIA
NONE

Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2

Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\)

ATNETWORK

Hướng dẫn giải chi tiết Thực hành 3

Phương pháp giải

Phương trình tiếp tuyến của đường tròn tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\)nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\)

Lời giải chi tiết

Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C)

Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:

\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON