Hướng dẫn Giải bài tập Toán 10 Chân trời sáng tạo Chương 9 Bài 3 Đường tròn trong mặt phẳng tọa độ giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động khám phá 1 trang 59 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hãy nhắc lại công thức tính khoảng cách giữa 2 điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\)trong mặt phẳng Oxy
-
Thực hành 1 trang 60 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Viết phương trình đường tròn (C) trong các trường hợp sau:
a) (C) có tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\)
b) (C) có tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\)
c) (C) đi qua 3 điểm \(A(1;4), B(0;1), C(4;3)\)
-
Thực hành 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó
a) \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
b) \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\)
c) \({x^2} + {y^2} - 4x - 8y + 5 = 0\)
d) \(2{x^2} + 2{y^2} + 6x + 8y - 2 = 0\)
-
Vận dụng 1 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Theo dữ kiện đã cho trong hoạt động khởi động của bài học, viết phương trình đường tròn biểu diễn tập hợp các điểm xa nhất mà vòi nước có thể phun tới
-
Vận dụng 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một sân khấu đã được thiết lập một hệ trục tọa độ bởi đạo diễn có thể sắp đặt ánh sáng và xác định vị trí của các diễn viên. Cho biết một đèn chiếu đang gọi trên sân khấu một vùng sáng bên trong đường tròn (C) có phương trình \({\left( {x - 13} \right)^2} + {\left( {y - 4} \right)^2} = 16\)
a) Tìm tọa độ tâm và bán kính của đường tròn (C)
b) Cho biết tọa độ trên sân khấu của 3 diễn viên A, B, C như sau: \(A(11;4).B(8;5),C(15;5)\).Diễn viên nào đang được đèn chiếu sáng?
-
Hoạt động khám phá 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn \((C)\) tâm \(I(a;b)\)và cho điểm\(M(x;y)\) tùy ý trong mặt phẳng Oxy. Gọi \(\Delta \) là tiếp tuyến với \((C)\) tại \({M_0}\)
a) Viết biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)
b) Viết biểu thức tọa độ của tích vô hướng của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)
c) Phương trình \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I} = 0\)là phương trình của đường thẳng nào?
-
Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\)
-
Vận dụng 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một vận động viên ném đĩa đã vung đĩa theo một đường tròn \((C)\) có phương trình:
\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{169}}{{144}}\).
Khi người đó vung đĩa đến vị trí điểm \(M\left( {\frac{{17}}{{12}};2} \right)\) thì buông đĩa (hình 4). Viết phương trình tiếp tuyến của đường tròn \((C)\) tại điểm M
-
Giải bài 1 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.
a) \({x^2} + {y^2} - 6x - 8y + 21 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 2 = 0\)
c) \({x^2} + {y^2} - 3x + 2y + 7 = 0\)
d) \(2{x^2} + 2{y^2} + x + y - 1
-
Giải bài 2 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Lập phương trình đường tròn trong các trường hợp sau:
a) \((C)\) có tâm \(I(1;5)\) và bán kính \(r = 4\)
b) \((C)\) có đường kính MN với \(M(3; - 1)\)và \(N(9;3)\)
c) \((C)\) có tâm \(I(2;1)\) và tiếp xúc với đường thẳng \(5x - 12y + 12 = 0\)
d) \((C)\) có tâm \(A(1; - 2)\) và đi qua điểm \(B(4; - 5)\)
-
Giải bài 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:
a) \(M(2;5),N(1;2),P(5;4)\)
b) \(A(0;6),B(7;7),C(8;0)\)
-
Giải bài 4 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm \(A(4;2)\)
-
Giải bài 5 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho đường tròn \((C)\) có phương trình \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
a) Chứng tỏ rằng điểm \(M(4;6)\) thuộc đường tròn \((C)\)
b) Viết phương trình tiếp tuyến của \((C)\) tại điểm \(M(4;6)\)
c) Viết phương trình tiếp tuyến của \((C)\)song song với đường thẳng \(4x + 3y + 2022 = 0\)
-
Giải bài 6 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một cái cầu hình bán nguyệt rộng 8,4 m cao 4,2 m như hình 5. Mặt đường dưới cộng được chia thành hai làn cho xe ra vào.
a) Vết phương trình mô phỏng cái cổng.
b) Một chiếc xe tải rộng 2,2 m và cao 2,6 m đi đúng làn đường quy định có thể đi qua cổng và không làm hư hỏng cổng hay không?
-
Giải Bài 1 trang 69 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.
a) \({x^2} + {y^2} + 2x + 2y - 9 = 0\)
b) \({x^2} + {y^2} - 6x - 2y + 1 = 0\)
c) \({x^2} + {y^2} + 8x + 4y + 2022 = 0\)
d) \(3{x^2} + 2{y^2} + 5x + 7y - 1 = 0\)
-
Giải Bài 2 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Lập phương trình đường tròn \(\left( C \right)\) trong các trường hợp sau:
a) \(\left( C \right)\) có tâm \(O\left( {0;0} \right)\) và bán kính \(R = 9\)
b) \(\left( C \right)\)có đường kính AB với \(A\left( {1;1} \right)\) và \(B\left( {3;5} \right)\)
c) \(\left( C \right)\) có tâm \(M\left( {2;3} \right)\) và tiếp xúc với đường thẳng \(3x - 4y + 9 = 0\)
d) \(\left( C \right)\) có tâm \(I\left( {3;2} \right)\) và đi qua điểm \(B\left( {7;4} \right)\)
-
Giải Bài 3 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:
a) \(A\left( {1;4} \right),B\left( {0;1} \right),C\left( {4;3} \right)\)
b) \(O\left( {0;0} \right),P\left( {16;0} \right),R\left( {0;12} \right)\)
-
Giải Bài 4 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ \(Ox,Oy\) và đi qua điểm \(A\left( {2;1} \right)\)
-
Giải Bài 5 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Cho đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 6x - 2y - 15 = 0\)
a) Chứng tỏ rằng điểm \(A\left( {0;5} \right)\) thuộc đường tròn \(\left( C \right)\)
b) Viết phương trình tiếp tuyến với \(\left( C \right)\) tại điểm \(A\left( {0;5} \right)\)
c) Viết phương trình tiếp tuyến với \(\left( C \right)\) song song với đường thẳng \(8x + 6y + 99 = 0\)
-
Giải Bài 6 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Một cái cổng bán nguyệt rộng 6,8m, cao 3,4m. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào
a) Viết phương trình mô phỏng cái cổng
b) Một chiếc xe tải rộng 2,4 m và cao 2,5 m đi đúng làn đường quy định có thể đi qua cổng được hay không?