Hoạt động khám phá 1 trang 59 SGK Toán 10 Chân trời sáng tạo tập 2
Hãy nhắc lại công thức tính khoảng cách giữa 2 điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\)trong mặt phẳng Oxy
Hướng dẫn giải chi tiết Hoạt động khám phá 1
Phương pháp giải
Khoảng cách hai điểm M,I (hay độ dài đoạn thẳng MI) chính là độ dài vecto \(\overrightarrow {MI} \)
Lời giải chi tiết
\(\overrightarrow {MI} = \left( {a - x;b - y} \right) \Rightarrow \left| {\overrightarrow {MI} } \right| = \sqrt {{{\left( {a - x} \right)}^2} + {{\left( {;b - y} \right)}^2}} \)
Vậy khoảng cách giữa hai điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\) là \(\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {;b - y} \right)}^2}} \)
-- Mod Toán 10 HỌC247
-
Trong mặt phẳng toạ độ Oxy, cho điểm M(1 ; 1) và đường thẳng : 3x + 4y + 3 = 0. Viết phương trình đường tròn (C), biết (C) có tâm M và đường thẳng ∆ cắt (C) tại hai điểm N, P thoả mãn tam giác MNP đều.
bởi Phong Vu 24/11/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Thực hành 1 trang 60 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 1 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 69 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST