Thực hành 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó
a) \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
b) \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\)
c) \({x^2} + {y^2} - 4x - 8y + 5 = 0\)
d) \(2{x^2} + 2{y^2} + 6x + 8y - 2 = 0\)
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải
+) Phương trình có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)là đường tròn với tâm \(I(a;b)\) và bán kính R
+) Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn khi và chỉ khi \({a^2} + {b^2} - c > 0\), khi đó nó có tâm I(a;b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \)
Lời giải chi tiết
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = 2,c = - 20\)
Ta có \({a^2} + {b^2} - c = 1 + 4 + 20 = 25 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1;2)\) và có bán kính \(R = \sqrt {25} = 5\)
b) Phương trình \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\) là phương trình dường tròn với tâm \(I( - 5; - 1)\) và bán kinh \(R = \sqrt {121} = 11\)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = - 3,b = - 2,c = - 2\)
Ta có \({a^2} + {b^2} - c = 9 + 4 + 2 = 15 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I( - 3; - 2)\) và có bán kính \(R = \sqrt {15} \)
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn
-- Mod Toán 10 HỌC247
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I thuộc đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + t\\y = 1 - t\end{array} \right.\) và (C) tiếp xúc với hai đường thẳng ∆2: 3x + 4y – 1 = 0, ∆3: 3x - 4y + 2 = 0
bởi hi hi 24/11/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Hoạt động khám phá 1 trang 59 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 60 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 1 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 61 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 62 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 63 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 69 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 70 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST