-
Câu hỏi:
Cho hàm số \(y = \sqrt {{x^2} + 3} - x\ln x\). Gọi M, N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1;2]. Tính M.N.
- A. \(M.N = 2\sqrt 7 + 4\ln 5\)
- B. \(M.N = 2\sqrt 7 - 4\ln 2\)
- C. \(M.N = 2\sqrt 7 - 4\ln 5\)
- D. \(M.N = 2\sqrt 7 + 4\ln 2\)
Đáp án đúng: B
Ta có \(y' = \left( {\sqrt {{x^2} + 3} - x\ln x} \right)' = \frac{x}{{\sqrt {{x^2} + 3} }} - (\ln x + 1)\)
Với \(x\in \left [ 1;2 \right ]\) ta có: \(y' = \frac{{x - \sqrt {{x^2} + 3} }}{{\sqrt {{x^2} + 3} }} - \ln x < 0\;(\forall x \in [1;2])\)
Do đó hàm số đạt giá trị lớn nhất tại x=1 và đạt giá trị nhỏ nhất tại x=2.
Do đó \(M.N = f(1).f(2) = 2.\left( {\sqrt 7 - 2\ln 2} \right)\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
- Tìm tất cả các giá trị thực của tham số m để hàm số y=(sin x+m)/(sin x-m)
- Tìm tập hợp tất cả các giá trị của m để hàm số y=(2x+1)/(x+m) nghịch biến trên khoảng (2;+infty)
- Tìm khẳng định đúng về tính đơn điệu của hàm số y = - {x^4} + 2{x^2} + 2017
- Tìm tập hợp các giá trị của tham số thực m để hàm số y = msin x + 7x - 5m + 3 đồng biến trên R
- Tìm nhận xét đúng về tính đơn điệu của hàm số y=(3-x)/(x+1)
- Tìm khẳng định đúng về hàm số y = {x^4} - 2{x^2} + 4
- Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số y=1/3x^3-(m-1)x^2-(m-3)x+2017m đồng biến trên các khoảng (-3;-1) và (0;3) là đoạn T=[a;b]
- Khẳng định nào sau đây đúng về hàm số y = {x^4} - 2{x^2} - 3
- Tìm m để hàm số y = {x^3} + 2{x^2} - mx + 1 đồng biến trên R
- Hàm số y = x + 4/x đồng biến trên khoảng nào dưới đây?