YOMEDIA
NONE
  • Câu hỏi:

    Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:

    • A. \(V = \frac{{5{a^3}}}{3}.\)
    • B. \(V = \frac{{20{a^3}}}{3}.\)
    • C. \(V = 5{a^3}\)
    • D. \(V = 10{a^3}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Thể tích khối tứ diện ABCD là: \({V_{ABCD}} = \frac{1}{6}AB.AC.AD = \frac{1}{6}.6a.5a.4a = 20{a^3}\) 

    Ta có:

    \(\frac{{{V_{A,MNP}}}}{{{V_{ABCD}}}} = \frac{{\frac{1}{3}.{S_{\Delta MNP}}.{d_{A;BCD}}}}{{\frac{1}{3}.{S_{\Delta BCD}}.{d_{A;BCD}}}} = \frac{{{S_{\Delta MCP}}}}{{{S_{\Delta BCD}}}} = \frac{1}{4}\) (do \({S_{\Delta DNP}} = {S_{\Delta MNC}} = {S_{\Delta BPM}} = \frac{1}{4}{S_{\Delta BCD}}\) )

    \( \Rightarrow {V_{A.MNP}} = \frac{1}{4}{V_{ABCD}} = \frac{1}{4}.20{a^3} = 5{a^3}.$\) 

     

    ATNETWORK

Mã câu hỏi: 67295

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON