-
Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình vuông, cạnh bên SA vuông góc với đáy. Gọi M là trung diểm của SB; mặt phẳng (P) chứa AM, song song với BD cắt SD tại N. Tính tỉ số \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}}\).
- A. \(\frac{3}{4}\)
- B. \(\frac{1}{8}\)
- C. \(\frac{1}{16}\)
- D. \(\frac{1}{3}\)
Đáp án đúng: B
\(\begin{array}{l} {V_{S.ADB}} = \frac{1}{2}{V_{S.ABCD}}\\ \frac{{{V_{S.AMN}}}}{{{V_{S.ABD}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SD}} = \frac{1}{4}\\ \Rightarrow {V_{S.AMN}} = \frac{1}{8}V{}_{S.ABCD} \end{array}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN GIÁN TIẾP
- Cho hình chóp S.ABCD có thể tích bằng 48 và ABCD là hình thoi. Các điểm M, N, P, Q lần lượt là các điểm trên các đoạn SA, SB, SC, SD thỏa mãn
- Cho hình chóp tứ giác đều S.ABCD. Gọi A', B', C', D' theo thứ tự là trung điểm của AB, BC, CD, DA.
- Cho hình chóp đều S.ABCD có đánh bằng 2a. Mặt bên hình chóp tạo với đáy một góc 60 độ. Tính theo a thể tích V của khối chóp S.ABMN
- Tính thể tích của khối tứ diện AB'C'C biết khối lăng trụ tam giác ABC.A'B'C' có thể tích bằng 30
- Tính tỷ số V(S.CDMN)/V(S.CDAB) biết hình chóp S.ABCD có ABCD là hình bình hành, M và N là trung điểm SA và SB
- Cho khối lăng trụ ABC.A'B'C' có thể tích bằng 30, tính thể tích khối tứ diện AB'C'C
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I có cạnh bằng a, góc BAD=60 độ, H là trung điểm của IB, SH vuông góc (ABCD)
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB
- Biết thể tích của khối lăng trụ ABC.A'B'C' bằng V. Tính thể tích V_1 tứ diện A'ABC' theo V
- Cho hình lăng trụ ABC.A’B’C’ vì M là trung điểm của CC’. Gọi khối đa diện (H) là phần còn lại của khối lăng trụ ABC.A’B’C’ sau khi cắt bỏ đi khối chóp M.ABC