-
Câu hỏi:
Cho hình lăng trụ ABC.A’B’C’ vì M là trung điểm của CC’. Gọi khối đa diện (H) là phần còn lại của khối lăng trụ ABC.A’B’C’ sau khi cắt bỏ đi khối chóp M.ABC. Tính tỷ số thể tích của (H) và khối chóp M.ABC.
- A. \(\frac{{{V_{(H)}}}}{{{V_{M.ABC}}}} = \frac{1}{6}\)
- B. \(\frac{{{V_{(H)}}}}{{{V_{M.ABC}}}} = 6\)
- C. \(\frac{{{V_{(H)}}}}{{{V_{M.ABC}}}} = \frac{1}{5}\)
- D. \(\frac{{{V_{(H)}}}}{{{V_{M.ABC}}}} = 5\)
Đáp án đúng: D
Gọi V là thể tích khối chóp M.ABC.
M là trung điểm của CC’
Theo bài ra ta có:
\(\frac{{{V_{C'ABM}}}}{{{V_{C'ABC}}}} = \frac{{C'M}}{{C'C}} = \frac{1}{2} \Rightarrow {V_{C'ABM}} = \frac{1}{2}{V_{C'ABC}}\)
\(\Rightarrow {V_{C'ABM}} = {V_{M.ABC}} = = \frac{1}{2}{V_{C'ABC}} = V\)
\(\Rightarrow {V_{C'ABC}} = 2V\)
Ta lại có \({V_{C'ABC}} = {V_{AA'B'C'}} = {V_{BA'B'C'}} = 2V\)
Nên: \({V_{(H)}}= {V_{C'ABC}} + {V_{AA'B'C'}} + {V_{BA'B'C'}} - {V_{MABC}} = 5V\)
Vậy \(\frac{V_{(H)}}{{{V_{M.ABC}}}} = 5\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN GIÁN TIẾP
- Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, AB=,AC=,SO=.Gọi M là trung điểm SC. Biết SO vuông góc với mặt phẳng (ABCD), Tính thể tích V của khối chóp M.OBC
- Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau
- Tính V'/V với V và V' lần lượt là thể tích của các khối chóp S.ABC và khối đa diện ABCA’B’C’ với A' B' C' lần lượt thuộc SA SB SC
- Gọi V1, V2 lần lượt là thể tích khối chóp O.A'B'C'D' và khối hộp ABCD.A'B'C'D' tính tỷ số V1/V2 với O là giao điểm của AC và BD
- Cho hình chóp S.ABC M, N lần lượt là trung điểm của SB SC tính tỷ số V(SAMN)/V(SABC)
- Tính thể tích của khối tứ diện QBMN biết M,N,Q lần lượt là trung điểm của AD, DC và B’C’ của hình hộp ABCD.A'B'C'D' có thể tích là V
- Cho hình chóp tứ giác S.ABCD có thể tích bằng V với đáy là hình bình hành C' là trung điểm SC mặt phẳng qua AC’ và song song với BD cắt các cạnh SB, SD lần lượt tại B’; D’
- Tính thể tích V của khối chóp E.BCD biết hình hộp chữ nhật ABCD.A’B’C’D’ có AB=2a; AD=3a, AA’=3a E là trung điểm của cạnh B’C’
- Tính thể tích V’ của khối chóp C’.ABC biết khối lăng trụ ABC.A’B’C’ có thể tích V
- Cho tứ diện ABCD có cạnh AB, AC và AD đôi một vuông góc với nhau AB = 6a,AC = 7a,AD = 4a P, N lần lượt là các điểm thuộc đoạn thẳng DB, DC sao cho 2DP = PB,2DN = NC