YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, M và N theo thứ tự là trung điểm của SA và SB. Tính tỉ số thể tích \(\frac{{{V_{S.CDMN}}}}{{{V_{S.CDAB}}}}\).

    • A. \(\frac{1}{4}\)
    • B. \(\frac{5}{8}\)
    • C. \(\frac{3}{8}\)
    • D. \(\frac{1}{2}\)

    Đáp án đúng: C

    Ta có:

    \({V_{S.MNCD}} = {V_{S.MCD}} + {V_{S.MNC}}\) và \({V_{S.ABCD}} = {V_{S.ACD}} + {V_{S.ABC}}\).

    Khi đó: \(\frac{{{V_{S.MCD}}}}{{{V_{S.ACD}}}} = \frac{{SM}}{{SA}} = \frac{1}{2} \Leftrightarrow {V_{S.MCD}} = \frac{1}{4}{V_{S.ABCD}}\)

     Mặt khác: \(\frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}} = \frac{1}{4} \Rightarrow {V_{S.MNC}} = \frac{1}{8}{V_{S.ABCD}}\)

    Từ trên suy ra \({V_{S.MNCD}} = \left( {\frac{1}{4} + \frac{1}{8}} \right){V_{S.ABCD}} = \frac{3}{8}{V_{S.ABCD}}\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN GIÁN TIẾP

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON