YOMEDIA
NONE
  • Câu hỏi:

    Cho các số thực \(a, b, c, d\) thay đổi luôn thỏa mãn \({\left( {a - 3} \right)^2} + {\left( {b - 6} \right)^2} = 1\) và \(4c + 3d - 5 = 0\). Tính giá trị nhỏ nhất của \(T = {\left( {c - a} \right)^2} + {\left( {d - b} \right)^2}\)  

    • A. 16
    • B. 18
    • C. 9
    • D. 15

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(M\left( {a;b} \right),N\left( {c;d} \right) \Rightarrow T = {\left( {c - a} \right)^2} + {\left( {d - b} \right)^2} = M{N^2}\)

    Theo đề ra ta có tập hợp các điểm M là đường tròn \({\left( {x - 3} \right)^2} + {\left( {y - 6} \right)^2} = 1\,\,\,\,\left( C \right)\) có tâm I(3;6), bán kính R = 1 và tập hợp các điểm N là đường thẳng \(4x + 3y - 5 = 0\,\,\,\left( d \right)\) 

    Ta có \(d\left( {I;d} \right) = \frac{{\left| {4.3 + 3.6 - 5} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 > R \Rightarrow \left( d \right)\) không cắt (C).

    \( \Rightarrow {T_{\min }} = {\left( {d\left( {I;d} \right) - R} \right)^2} = {\left( {5 - 1} \right)^2} = 16\) 

    ATNETWORK

Mã câu hỏi: 88384

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON