AMBIENT

Bài tập 58 trang 90 SGK Toán 9 Tập 2

Giải bài 58 tr 90 sách GK Toán 9 Tập 2

Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = DC và

 \(\small \widehat{DCB}=\frac{1}{2}\widehat{ACB}\)

a) Chứng minh ABDC là tứ giác nội tiếp

b) Xác định tâm của đường tròn đi qua bốn điểm A, B, D, C.

ADSENSE

Hướng dẫn giải chi tiết bài 58

Với bài 58, để chứng minh tứ giác nội tiếp và xác định tâm đường tròn, ta cần vận dụng các góc đã học, để tìm ra lời giải bài toán

Câu a:

Theo đề, ta có:

\(\small \widehat{DCB}=\frac{1}{2}\widehat{ACB}=30^o\)

Mặc khác:

\(\small DB=DC\)

Vậy D nằm trên đường trung trực của đoạn thẳng BC

Suy ra tam giác BCD cân tại D

\(\small \Rightarrow \widehat{DCB}=\widehat{DBC}=30^o\)

\(\small \Rightarrow \widehat{ABD}=\widehat{ACD}=90^o\)

Tứ giác có hai góc đối nhau tổng bằng 180 độ, suy ra ABCD là tứ giác nội tiếp

Câu b:

Theo chứng minh trên:

\(\small \widehat{ACD}=90^o\)

Suy ra góc ACD là góc nội tiếp chắn nửa đường tròn.

Vậy tâm chính là trung điểm đoạn thẳng AD.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 58 trang 90 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
  • Thùy Nguyễn

    cho tam giác nhọn ABC nội tiếp đường tròn (O) và AB<AC. Gọi H là trực tâm của tam giác ABC , AH giao đường tròn O tại L . Lấy F bất kì trên cung LC nhỏ ( F khác L và C). AC là đường trung trực của FK
    1. CMR:AHCK là tứ giác nội tiếp đường tròn
    2.HK giao AC tại I, À giao HC tại G. chứng minh AO vuông góc với GI

    Theo dõi (0) 1 Trả lời
  • Mai Rừng

    Vẽ hình bài giúp mk với

    trên đường tròn (O;R) cho trước , vẽ dây cung AB cố định không đi qua O. điểm M bất kì trên tia BA sao cho M nằm ngoài đường tron (O;R). từ M kẻ hai tiếp tuyến MC và MD với đường tròn (O;R) (C,D là hai tiếp điểm)

    a, c/m tứ giác OCMD nội tiếp

    B, chứng minh \(MC^2\)=MA.MB

    Theo dõi (0) 1 Trả lời
  • Nguyễn Quang Thanh Tú

    -cho \(\Delta\)ABC vuông ở A có AH là đường cao và BE là đường phân giác ( H thuộc BC, E thuộc AC) .kẻ AD\(\perp\)BE tại D

    a)CMR: tứ giác ABHD nội tiếp (O)

    b)CMR:\(\widehat{HDC}=\widehat{CEH}\)

    Theo dõi (0) 1 Trả lời
  • Thu Hang

    Cho tam giác nhọn ABC. Kẻ BE vuông góc với AC, CF vuông góc với AB. ( E thuộc AC, F thuộc AB).

    a) Gọi M là trung điểm của BC. Chứng minh rằng: MF= 1/2 BC và tam giác MEF cân

    b) chứng minh rằng: góc CBF + góc CEF= 180 độ

    c) Chứng minh góc BEF bằng góc BCF

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thị Thúy

    Cho đường tròn tâm O đường kính R dây AB= R . M N lần lược thuộc điểm chính giữa cung nhỏ và lớn AB. Trên cung nhỏ AN lấy C , trên cung nhỏ BN lấy D MC cắt AB tại E . MD cắt AB tại F

    a)Chứng minh tam giác AEM đồng dạng tam giác CAM

    b)Chứng minh tứ giác CEFD nội tiếp

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thanh Trà

    Bài 7.1 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 107)

    Cho tam giác ABC có 3 góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ

     

    a) Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L

     

    b) Chứng minh \(\widehat{LBH},\widehat{LIH},\widehat{KIH},\widehat{KCH}\) là bốn góc bằng nhau

     

    Theo dõi (0) 1 Trả lời
  • Nguyễn Anh Hưng

    Bài 43 (Sách bài tập - tập 2 - trang 107)

    Cho hai đoạn thắng AC và BD cắt nhau tại E. Biết AE.EC = BE.ED.

     

    Chứng minh bốn điểm A, B, C, D cùng nằm trên một đường tròn ?

     

    Theo dõi (0) 1 Trả lời
  • thu hằng

    Bài 42 (Sách bài tập - tập 2 - trang 107)

    Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A, B, C. Từ một điểm D (khác điểm P) trên đường tròn (PBC) kẻ các tia DB, DC cắt các đường tròn (PAB) và (PAC) lần lượt tại M và N. Chứng minh ba điểm M, A, N thẳng hàng ?

     

    Theo dõi (0) 1 Trả lời
  • Nguyễn Bảo Trâm

    Bài 41 (Sách bài tập - tập 2 - trang 106)

    Cho tam giác cân ABC có đáy BC và \(\widehat{A}=20^0\). Trên nửa mặt phẳng bở AB không chứa điểm C lấy điểm D sao cho DA = DB và \(\widehat{DAB}=40^0\). Gọi E là giao điểm của AB và CD

     

    a) Chứng minh ACBD là tứ giác nội tiếp

     

    b) Tính \(\widehat{AED}\)

     

    Theo dõi (0) 1 Trả lời
  • hồng trang

    Bài 40 (Sách bài tập - tập 2 - trang 106)

    Cho tam giác ABC. Các đường phân giác trong của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại S. Các đường phân giác ngoài của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại E.

     

    Chứng minh : BSCE là một tứ giác nội tiếp 

     

                              

     

    Theo dõi (0) 1 Trả lời
  • Lê Tấn Vũ

    Bài 39 (Sách bài tập - tập 2 - trang 106)

    Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh EHCD là một tứ giác nội tiếp ?

     

    Theo dõi (0) 2 Trả lời

 

YOMEDIA