Bài tập 13 trang 104 SBT Toán 9 Tập 1
Cho hai đoạn thẳng có độ dài là a và b. Dựng các đoạn thẳng có độ dài tương ứng bằng:
\(\begin{array}{l}
a)\sqrt {{a^2} + {b^2}} \\
b)\sqrt {{a^2} - {b^2}} \left( {a > b} \right)
\end{array}\)
Hướng dẫn giải chi tiết
a. *Cách dựng (hình a):
- Dựng góc vuông xOy.
- Trên tia Ox, dựng đoạn OA = a
- Trên tia Oy, dựng đoạn OB = b.
- Nối AB, ta có đoạn AB = \(\sqrt {{a^2} + {b^2}} \) cần dựng
*Chứng minh:
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
AB2 = OA2 + OB2 = a2 + b2
Suy ra: AB = \(\sqrt {{a^2} + {b^2}} \)
b. *Cách dựng (hình b):
- Dựng góc vuông xOy
- Trên tia Ox, dựng đoạn OA = b.
- Dựng cung tròn tâm A, bán kính bằng a cắt Oy tại B.
Ta có đoạn OB = \(\sqrt {{a^2} - {b^2}} \) (a > b) cần dựng.
*Chứng minh:
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
AB2 = OA2 + OB2 ⇒ OB2 = AB2 – OA2 = a2 – b2
Suy ra: OB = \(\sqrt {{a^2} - {b^2}} \)
-- Mod Toán 9 HỌC247
-
Tính độ dài 2 cạnh góc vuông AB và AC, biết tỉ số 2 cạnh là AB/AC=15cm, cạnh huyền BC=34cm
bởi Nguyễn Sơn Ca 19/01/2019
Tam giác ABC vuông tại A , có AH là đường cao , biết tỉ số 2 cạnh là AB/AC=15cm , cạnh huyền BC=34cm
a. Tính độ dài 2 cạnh góc vuông AB và AC
b.Tính đường cao AH và các đoạn BH , CHTheo dõi (0) 1 Trả lời -
Chứng minh rằng 4/3AB^2=1/AI^2+1/AK^2
bởi Lan Anh 21/01/2019
Cho hình thoi ABCD có góc A = 120 độ . Vẽ tia Ax nằm trong hình thoi sao cho góc xAB = 15 độ . Tia Ax cắt BC tại I và cắt đường thẳng CD tại K . CMR \(\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)
Theo dõi (0) 1 Trả lời -
Chứng minh ΔADE ~ ΔABC
bởi Vũ Hải Yến 21/01/2019
cho tam giác nhọn ABC 2 đường cao BD và CE hãy biểu thị cosAtheo 2 cách từ đó chứng minh \(\Delta ADE\) ~ \(\Delta ABC\)
Theo dõi (0) 2 Trả lời
Bài tập SGK khác
Bài tập 11 trang 104 SBT Toán 9 Tập 1
Bài tập 12 trang 104 SBT Toán 9 Tập 1
Bài tập 14 trang 104 SBT Toán 9 Tập 1
Bài tập 15 trang 104 SBT Toán 9 Tập 1
Bài tập 16 trang 104 SBT Toán 9 Tập 1
Bài tập 17 trang 104 SBT Toán 9 Tập 1
Bài tập 18 trang 105 SBT Toán 9 Tập 1
Bài tập 19 trang 105 SBT Toán 9 Tập 1
Bài tập 20 trang 105 SBT Toán 9 Tập 1
Bài tập 1.1 trang 105 SBT Toán 9 Tập 1
Bài tập 1.2 trang 105 SBT Toán 9 Tập 1
Bài tập 1.3 trang 105 SBT Toán 9 Tập 1
Bài tập 1.4 trang 105 SBT Toán 9 Tập 1
Bài tập 1.5 trang 105 SBT Toán 9 Tập 1
Bài tập 1.6 trang 106 SBT Toán 9 Tập 1
Bài tập 1.7 trang 106 SBT Toán 9 Tập 1
Bài tập 1.8 trang 106 SBT Toán 9 Tập 1