Thực hành 2 trang 65 SGK Toán 11 Chân trời sáng tạo tập 1
Tìm các giới hạn sau:
a) \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right)\);
b) \(\lim \left( {\frac{{1 - 4n}}{n}} \right)\).
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải:
Bước 1: Đặt dãy số cần tính giới hạn là \({u_n}\), từ đó tìm \(a\) sao cho \(\lim \left( {{u_n} - a} \right) = 0\).
Bước 2: Áp dụng định lý giới hạn hữu hạn của dãy số: \(\lim {u_n} = a\) nếu \(\lim \left( {{u_n} - a} \right) = 0\).
Lời giải chi tiết:
a) Đặt \({u_n} = 2 + {\left( {\frac{2}{3}} \right)^n} \Leftrightarrow {u_n} - 2 \)\(= {\left( {\frac{2}{3}} \right)^n}\).
Suy ra \(\lim \left( {{u_n} - 2} \right) \)\( = \lim {\left( {\frac{2}{3}} \right)^n} = 0\)
Theo định nghĩa, ta có \(\lim {u_n} = 2\).
Vậy \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right) = 2\)
b) Đặt \({u_n} = \frac{{1 - 4n}}{n} \)\(= \frac{1}{n} - 4\)\( \Leftrightarrow {u_n} - \left( { - 4} \right) \)\(= \frac{1}{n}\).
Suy ra \(\lim \left( {{u_n} - \left( { - 4} \right)} \right)\)\( = \lim \frac{1}{n} = 0\).
Theo định nghĩa, ta có \(\lim {u_n} = - 4\).
Vậy \(\lim \left( {\frac{{1 - 4n}}{n}} \right) = - 4\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Thực hành 1 trang 65 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 2 trang 65 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 3 trang 66 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 66 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 4 trang 67 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 4 trang 68 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 1 trang 68 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 5 trang 68 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 69 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 69 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 69 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 70 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 70 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 75 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 75 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 75 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 9 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 10 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 11 trang 76 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 12 trang 77 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 13 trang 77 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST