YOMEDIA
NONE

Bài tập 9 trang 224 SGK Toán 11 NC

Bài tập 9 trang 224 SGK Toán 11 NC

Một túi chứa 16 viên bi, trong đó có 7 viên bi trắng, 6 viên bi đen và 3 viên bi đỏ.

a. Lấy ngẫu nhiên 2 viên bi trong túi.

- Tính xác suất để được 2 viên bi đen.

- Tính xác suất để được 1 viên bi đen và 1 viên bi trắng.

b. Lấy ngẫu nhiên 3 viên bi trong túi.

- Tính xác suất để được 3 viên bi đỏ.

- Tính xác suất để được 3 viên bi với 3 màu khác nhau.

ATNETWORK

Hướng dẫn giải chi tiết

a. Số trường hợp có thể là \(C_{16}^2.\)

Số trường hợp rút được cả hai viên bi đen là \(C_6^2\). Do đó xác suất để rút được hai viên bi đen là \(\frac{{C_6^2}}{{C_{16}^2}} = \frac{1}{8}.\)

Số trường hợp rút được 1 viên bi trắng, 1 viên bi đen là \(C_7^1.C_6^1 = 42\). Do đó xác suất rút được 1 viên bi trắng, 1 viên bi đen là \(\frac{{42}}{{C_{16}^2}} = \frac{7}{{20}}\)

b. Số trường hợp có thể là \(C_{16}^3.\)

Số trường hợp rút được 3 viên bi đỏ là \(C_3^3 = 1.\)

Vậy xác suất rút được 3 viên bi đỏ là \(\frac{1}{{C_{16}^3}} = \frac{1}{{560}}.\)

Theo qui tắc nhân, ta có : 7.6.3 = 126 cách chọn 3 viên bi có 3 màu khác nhau. Vậy xác suất rút được 3 viên bi có 3 màu khác nhau là \(\frac{{126}}{{C_{16}^3}} = \frac{9}{{40}}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 9 trang 224 SGK Toán 11 NC HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON