Bài tập 25 trang 227 SGK Toán 11 NC
Một điểm M chuyển động trên parabol \(y = - {x^2} + 17x - 66\) theo hướng tăng của x. Một người quan sát đứng ở vị trí P(2 ; 0)
Hãy xác định các giá trị của hoành độ điểm M để người quan sát có thể nhìn thấy được điểm M.
Hướng dẫn giải chi tiết
Người quan sát thấy được điểm M nếu M thuộc phần parabol nằm trong góc tạo bởi hai tiếp tuyến của parabol đi qua P(2 ; 0). Điều đó tương đương với bất đẳng thức kép x1 ≤ m ≤ x2; trong đó m là hoành độ của điểm M, x1 và x2 là hoành độ hai tiếp điểm. Ta cần xác định x1 và x2.
Phương trình đường thẳng (d) đi qua P(2 ; 0) với hệ số góc bằng k là :
\(y = k(x-2)\)
Để (d) là tiếp tuyến của parabol \(y = - {x^2} + 17x - 66\) thì ta phải có :
\(\left\{ {\begin{array}{*{20}{c}}
{ - {x^2} + 17x - 66 = k\left( {x - 2} \right)}\\
{ - 2x + 17 = k}
\end{array}} \right.\)
Khử k, ta được :
\({x^2} - 4x - 32 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{{x_1} = - 4}\\
{{x_2} = 8}
\end{array}} \right.\)
(x1 và x2 chính là hai hoành độ tiếp điểm của hai tiếp tuyến kẻ từ P(2 ; 0) đến parabol đã cho).
Vậy người quan sát có thể nhìn được các điểm M thuộc parabol đã cho, nếu hoành độ điểm M thuộc đoạn [-4 ; 8].
-- Mod Toán 11 HỌC247
-
Cho hàm số \(y = \frac{{{x^3}}}{3} - 2{x^2} + 1\) có đồ thị (C). Gọi A là một điểm thuộc (C) có hoành độ x0 = 1. Tiếp tuyến của (C) tại A song song với đường thẳng nào dưới đây?
bởi Kim Ngan
01/03/2021
A. x = -3
B. y = -3
C. -3x + y - 1 = 0
D. 3x + y - 1 = 0
Theo dõi (0) 1 Trả lời -
Cho hàm số \(y = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{x - 1}}\,voi\,x \ne 1\\m\,voi\,x = 1\end{array} \right.\) Hàm số liên tục tại x = 1 khi m bằng:
bởi May May
01/03/2021
A. 3
B. 1
C. 0
D. -1
Theo dõi (0) 1 Trả lời -
Giới hạn \(\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\sin \left( {x - \frac{\pi }{2}} \right)}}{{2x - \pi }}\) bằng:
bởi Mai Trang
28/02/2021
A. 0
B. -1
C. 1/2
D. 2
Theo dõi (0) 1 Trả lời