YOMEDIA
NONE

Số nghiệm thuộc đoạn [0; π] của phương trình \(\frac{{1 - \cos 6x}}{{\sin x}} = 0\) là:

A. 4         

B. 3         

C. 2         

D. 1

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Điều kiện \(\sin x \ne 0\)\( \Leftrightarrow \) x ≠ kπ.

    Khi đó,

    \(\begin{array}{l}\frac{{1 - \cos 6x}}{{\sin x}} = 0\\ \Rightarrow 1 - \cos 6x = 0\\ \Leftrightarrow \cos 6x = 1\\ \Leftrightarrow 6x = k2\pi \\ \Leftrightarrow x = \frac{{k\pi }}{3},k \in \mathbb{Z}\end{array}\)

    Với \(x \in \left[ {0;\pi } \right]\) thì \(0 \le \frac{{k\pi }}{3} \le \pi  \Leftrightarrow 0 \le k \le 3\)

    Do \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0,1,2,3} \right\}\)

    Với \(k = 0\) thì \(x = 0\left( {KTM} \right)\)

    Với \(k = 1\) thì \(x = \frac{\pi }{3}\left( {TM} \right)\)

    Với \(k = 2\) thì \(x = \frac{{2\pi }}{3}\left( {TM} \right)\)

    Với \(k = 3\) thì \(x = \pi \left( {KTM} \right)\)

    Vậy pt có 2 nghiệm trên đoạn \(\left[ {0;\pi } \right]\).

    Chọn đáp án: C

      bởi Trong Duy 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON