Bài tập 2 trang 63 SGK Hình học 11

Giải bài 2 tr 63 sách GK Toán Hình lớp 11

Cho tứ diện ABCD. Trên cạnh AB lấy một điểm M. Cho \((\alpha )\) là mặt phẳng qua M, song song với hai đường thẳng AC và BD

a) Tìm giao tuyến của \((\alpha )\) với các mặt tứ diện

b) Thiết diện của tứ diện cắt bởi mặt phẳng \((\alpha )\) là hình gì?

Hướng dẫn giải chi tiết bài 2

Câu a:

Ta có:

\((\alpha ) //AC\) và \(AC\subset (ABC)\)

⇒ AC song song với giao tuyến của \((\alpha )\) và (ABC)

* Trên mp(ABC) kẻ MN // AC \((N\in BC)\)

\(\Rightarrow MN=(\alpha )\cap (ABC)\)

\((\alpha ) // BD\) và \(BD\subset (ABC)\)

⇒ BD song song với giao tuyến của \((\alpha )\) và (BCD)

* Trên mp(BCD) kẻ \(NP // BD (P\in CD)\)

\(\Rightarrow NP=(\alpha )\cap (BCD)\)

\((\alpha ) //AC\) và \(AC\subset (ACD)\)

⇒ AC song song với giao tuyến của \((\alpha )\) và (ACD)

* Trên mp(ACD) kẻ PQ // AC \((Q\in AD)\)

\(\Rightarrow PQ=(\alpha )\cap (ACD)\)

Ta thấy M và Q là 2 điểm chung của mp\((\alpha )\) và (ABD)

\(\Rightarrow (\alpha )\cap (ABD)=MQ\)

Câu b:

Theo câu a) ta có:

\(\left.\begin{matrix} MN //AC\\ PQ //AC \end{matrix}\right\}\Rightarrow MN // PQ\)

và \((\alpha ) // BD, BD\subset (ABD)\Rightarrow BD // MQ\)

Mặt khác NP // AC ⇒ NP // MQ (2)

Từ (1) và (2) ⇒ MNPQ là hình bình hành 

⇒ Thiết diện cảu tứ diện cắt bởi mp\((\alpha )\) là hình bình hành.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 2 trang 63 SGK Hình học 11 HAY thì click chia sẻ 
  • hoàng duy
    Bài 2.17 (Sách bài tập - trang 74)

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Gọi O là giao điểm của AC và BD, O' là giao điểm của AE và BF

    a) Chứng minh rằng OO' song song với hai mặt phẳng (ADF) và (BCE)

    b) Gọi M và N lần lượt là trọng tâm của các tam giác ABD và ABE. Chứng minh rằng MN // (CEF) ?

    Theo dõi (0) 1 Trả lời
  • Tieu Dong

    Cho hai góc đối đỉnh AOB và A'OB'. Gọi Ox là tia phân giác của góc AOB,Ox' là tia đối của tia Ox. Vì sao Ox' là tia phân giác của góc A'OB'?

    Theo dõi (0) 1 Trả lời
  • Tam Thiên

    Cho hình chop' SABCD . ABCD là hình bình hành . M,N lần lượt là trung điểm của SB và SD .(AMN) \(\cap\) SC=P            a,Tính SP/PC                              

    b,Thay M ở SB t/m~ SM/MB=2 . Tính SP/PC

     c,Thay M ở SB  t/m SM/MB=2/5 Tính SP/PC 

     

    Theo dõi (1) 2 Trả lời