YOMEDIA
NONE

Phương trình đã cho nào sau đây có nghiệm duy nhất trên \(\mathbb{R}\)?

A. \(3{\sin ^2}x - {\cos ^2}x + 5 = 0\)

B. \({x^2} - 5x + 6 = 0\)

C. \({x^5} + {x^3} - 7 = 0\)

D. \(3\tan x - 4 = 0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đáp án C vì: Xét hàm \(f\left( x \right) = {x^5} + {x^3} - 7\) có \(f'\left( x \right) = 5{x^4} + 3{x^2} = {x^2}\left( {5{x^2} + 3} \right)\).

    \(f'\left( x \right) = 0 \Leftrightarrow x = 0\) và \(f'\left( x \right) \ge 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\).

    Mặt khác \(f\left( 0 \right) =  - 7 < 0,f\left( 2 \right) = 33 > 0\) nên \(f\left( 0 \right).f\left( 2 \right) < 0\).

    Hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) nên tồn tại \({x_0} \in \left( {0;2} \right)\) để \(f\left( {{x_0}} \right) = 0\) hay phương trình \(f\left( x \right) = 0\) có nghiệm duy nhất trên \(\mathbb{R}\).

    Chọn C.

    Chú ý:

    Cách khác:

    +) Phương trình \(3{\sin ^2}x - {\cos ^2}x + 5 = 0\) \( \Leftrightarrow 3{\sin ^2}x - \left( {1 - {{\sin }^2}x} \right) + 5 = 0\) \( \Leftrightarrow 4{\sin ^2}x + 4 = 0\) \( \Leftrightarrow 4\left( {{{\sin }^2}x + 1} \right) = 0\) (vô nghiệm vì \(0 \le {\sin ^2}x \le 1\)) nên loại A.

    +) Các phương trình \({x^2} - 5x + 6 = 0\) và \(3\tan x - 4 = 0\) có nhiều hơn một nghiệm nên loại B, D.

    Chọn C.

      bởi Lê Thánh Tông 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON