YOMEDIA
NONE

Đặt \({I_n} = \int\limits_0^{{\pi \over 2}} {{\rm{co}}{{\rm{s}}^n}xdx} \). Chứng minh rằng \({I_n} = {{n - 1} \over n}{I_{n - 2}}\). Từ đó hãy tính \({I_5}\)

Đặt \({I_n} = \int\limits_0^{{\pi  \over 2}} {{\rm{co}}{{\rm{s}}^n}xdx} \). Chứng minh rằng \({I_n} = {{n - 1} \over n}{I_{n - 2}}\). Từ đó hãy tính \({I_5}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Sử dụng phương pháp tích phân từng phần với \(u = c{\rm{o}}{{\rm{s}}^{n - 1}}x,v' = c{\rm{os}}x\) suy ra

    \({I_n} = \left( {n - 1} \right)\int\limits_0^{{\pi  \over 2}} {{\rm{co}}{{\rm{s}}^{n - 2}}x.{{\sin }^2}xdx} \)

    Thay \({\sin ^2}x = 1 - c{\rm{o}}{{\rm{s}}^2}x\), ta có điều cần chứng minh.

    Suy ra \({I_5} = {4 \over 5}{I_3} = {4 \over 5}.{2 \over 3}{I_1} = {8 \over {15}}\)

      bởi thi trang 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON