-
Câu hỏi:
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {2m + 3} \right)x + 2017\) đồng biến trên \(\mathbb{R}\).
- A. m=-2
- B. Không có giá trị thực nào của m thỏa mãn yêu cầu bài toán
- C. \(m \ge - 2\)
- D. \(m \in\mathbb{R}\)
Đáp án đúng: A
Hàm số đã cho đồng biến trên khi và chỉ khi:
\(y' = {x^2} - 2(m + 1)x - (2m + 3) \ge 0{\rm{ }},\forall x \in \mathbb{R}\)
Điều này xảy ra khi:
\(\Delta ' = {(m + 1)^2} + (2m + 3) \le 0 \Leftrightarrow {m^2} + 4m + 4 \le 0 \Leftrightarrow m = - 2\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
- Tìm m để hàm số f(x)=(sqrtx-3)/(sqrtx-3) nghịch biến trên (4;16)
- Tìm m để hàm số y=(m-sinx)/cos^x nghịch biến trên (0;pi/6)
- Xét tính đơn điệu của hàm số y=-x^3-6x^2+10
- Tìm khẳng định đúng về số điểm cực trị của hàm số biết đồ thị của hàm số f'(x)
- Xác định tính đơn điệu của hàm số y=x^4-2x^2-1
- Tìm m để hàm số y=mx^3+mx^2+(m-1)x-3 đồng biến trên R
- Tìm m để hàm số y=mx^3-x^2+3x+m-2 đồng biến trên (-3;0)
- Xác định tính đơn điệu của hàm số có đạo hàm f'(x)=x^2(x+2)
- Khảo sát tính đơn điệu của hàm số f(x)=x/lnx
- Tìm m để hàm số y=((m-1)sinx-2)/(sinx-m) nghịch biến trên khoảng (0;pi/2)