YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị thực của tham số m để hàm số \(y = m{x^3} - {x^2} + 3x + m - 2\) đồng biến trên \(( - 3;0).\)  

    • A. m=0
    • B. \(m \ge \frac{1}{9}\)
    • C. \(m \ge- \frac{1}{3}\)
    • D. \(m \ge0\)

    Đáp án đúng: C

    Hàm số đã cho có \(y' = 3m{x^2} - 2x + 3\)

    Trường hợp m=0 không thỏa mãn yêu cầu bài toán.

    Ta xét trường hợp \(m\ne0\) 

    Hàm số đã cho đồng biến trên khoảng (-3;0) khi và chỉ khi \(y'\geq 0\) với \(\forall x \in \left( { - 3;0} \right)\)

    \(\Leftrightarrow 3m{x^2} - 2x + 3 \ge 0,\forall x \in \left( { - 3;0} \right)\)      

    Xét hàm số\(f\left( x \right) = \frac{{2x - 3}}{{3{x^2}}},\forall x \in \left( { - 3;0} \right)\) ta có \(f'\left( x \right) = \frac{{2{x^2} + 6x}}{{9{x^4}}} < 0,\forall x \in \left( { - 3;0} \right)\) 

    Từ bảng biến thiên suy ra với \(m \ge - \frac{1}{3}\) thì hàm số đồng biến trên khoảng (0;3)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON