YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({x^3} - 3mx + 2 = 0\) có nghiệm duy nhất. 

    • A. \(m < 1\). 
    • B. \(m \le 0\). 
    • C. \(m < 0\). 
    • D. \(0 < m < 1\). 

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét phương trình \({x^3} - 3mx + 2 = 0\,\left( * \right)\) .

    Nhận thấy \(x = 0\) không là nghiệm của \(\left( * \right)\) nên ta xét \(x \ne 0.\)

    Khi đó \(\left( * \right) \Leftrightarrow {x^3} + 2 = 3mx \Rightarrow \dfrac{{{x^3}}}{x} + \dfrac{2}{x} = 3m \Leftrightarrow {x^2} + \dfrac{2}{x} = 3m\)

    Xét hàm số \(y = {x^2} + \dfrac{2}{x}\,\left( {x \ne 0} \right) \Rightarrow y' = 2x - \dfrac{2}{{{x^2}}} = 0 \Leftrightarrow \dfrac{{{x^3} - 1}}{{{x^2}}} = 0 \Rightarrow {x^3} - 1 = 0 \Leftrightarrow x = 1 \Rightarrow y\left( 1 \right) = 3\)

    Ta có BBT:

    Từ BBT ta thấy để phương trình (*) có nghiệm duy nhất thì đường thẳng \(y = 3m\) cắt đồ thị hàm số \(y = {x^2} + \dfrac{2}{x}\) tại một điểm duy nhất nên \(3m < 3 \Leftrightarrow m < 1.\)

    Chọn A

    ATNETWORK

Mã câu hỏi: 359608

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON