YOMEDIA
NONE
  • Câu hỏi:

    Xét các số phức \(z\) thỏa mãn  \(\left| {z - 1 - 3i} \right| = 2\). Số phức \(z\) mà \(\left| {z - 1} \right|\) nhỏ nhất là: 

    • A. \(z = 1 + 5i\)   
    • B. \(z = 1 + i\)    
    • C. \(z = 1 + 3i\)   
    • D. \(z = 1 - i\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Tập hợp các điểm M biểu diễn của các số phức thỏa mãn \(\left| {z - 1 - 3i} \right| = 2\) là đường tròn: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\)

     là khoảng cách từ điểm M đến điểm \(A\left( {1;0} \right)\). Khoảng cách này nhỏ nhất khi và chỉ khi M nằm giữa I và A (với \(I\left( {1;3} \right)\) là tâm đường tròn \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\))

     Dễ dàng tính được \(M\left( {1;1} \right)\).

    Vậy, số phức z thỏa mãn là \(z = 1 + i\).

    Chọn: B

    ATNETWORK

Mã câu hỏi: 359636

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON