YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = AD\sqrt 2 \), \(SA \bot \left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng 

    • A. \(45^\circ \).
    • B. \(90^\circ \).
    • C. \(60^\circ \).
    • D. \(30^\circ \).

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi \(K\) là giao điểm của \(AC\) và \(DM\).

    Ta có \(AM = MB = \dfrac{{AB}}{2} = \dfrac{{AD\sqrt 2 }}{2}\) và \(BC = AD\)

    Xét tam giác vuông \(ADM\) có \(\tan \widehat {ADM} = \dfrac{{AM}}{{AD}} = \dfrac{{\dfrac{{AD\sqrt 2 }}{2}}}{{AD}} = \dfrac{{\sqrt 2 }}{2}\)  (1)

    Xét tam giác vuông \(ABC\) có \(\tan \widehat {BAC} = \dfrac{{BC}}{{AB}} = \dfrac{{AD}}{{AD\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\) (2)

    Từ (1) và (2) suy ra \(\tan \widehat {ADM} = \tan \widehat {BAC} \Rightarrow \widehat {ADM} = \widehat {BAC}\) 

    mà  \(\widehat {ADM} + \widehat {AMD} = 90^\circ  \Rightarrow \widehat {BAC} + \widehat {AMK} = 90^\circ  \Rightarrow \widehat {AKM} = 90^\circ \) hay \(DM \bot AC\)  (3)

    Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AC\) (4)

    Từ (3) và (4) suy ra \(AC \bot \left( {SDM} \right) \Rightarrow \left( {SAC} \right) \bot \left( {SDM} \right)\) nên góc giữa \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng \(90^\circ .\)

    Chọn B.

    ATNETWORK

Mã câu hỏi: 359618

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON