YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp đều \(S.ABC\) có độ dài cạnh đáy bằng \(2\), điểm \(M\) thuộc cạnh \(SA\) sao cho \(SA = 4SM\) và \(SA\) vuông góc với mặt phẳng \(\left( {MBC} \right)\). Thể tích \(V\) của khối chóp \(S.ABC\) là 

    • A. \(V = \dfrac{2}{3}\).   
    • B. \(V = \dfrac{{2\sqrt 5 }}{9}\).
    • C. \(\dfrac{4}{3}\).
    • D. \(V = \dfrac{{2\sqrt 5 }}{3}\).

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi độ dài cạnh bên của hình chóp đều \(S.ABC\) là \(SA = SB = SC = 4x\left( {x > 0} \right)\) khi đó vì \(SA = 4SM \Rightarrow SM = x;AM = 3x.\)

    Gọi \(D\) là trung điểm \(BC\) suy ra \(AD = \dfrac{{2\sqrt 3 }}{2} = \sqrt 3 \) (đường trung tuyến trong tam giác \(ABC\) đều cạnh \(2\)) và \(DC = \dfrac{{CB}}{2} = 1.\)

    Vì \(SA \bot \left( {MBC} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot MC\\SA \bot MD\end{array} \right.\)

    Xét tam giác \(AMD\) vuông tại \(M\), ta có \(M{D^2} = A{D^2} - A{M^2} = {\left( {\sqrt 3 } \right)^2} - {\left( {3x} \right)^2} = 3 - 9{x^2}\)

    Xét tam giác \(SBC\) cân tại \(S \Rightarrow SD \bot BC\) nên theo định lý Pytago cho tam giác vuông \(SDC\) ta có \(S{D^2} = S{C^2} - C{D^2} = {\left( {4x} \right)^2} - {1^2} = 16{x^2} - 1\)

    Xét tam giác \(SMD\) vuông tại \(M\) có

    \(S{D^2} = M{D^2} + M{S^2} \Leftrightarrow 16{x^2} - 1 = 3 - 9{x^2} + {x^2} \Leftrightarrow 24{x^2} = 4 \Leftrightarrow {x^2} = \dfrac{1}{6} \Rightarrow x = \dfrac{1}{{\sqrt 6 }}\)

    Suy ra \(SM = \dfrac{1}{{\sqrt 6 }};M{D^2} = 3 - 9.\dfrac{1}{6} = \dfrac{3}{2} \Rightarrow MD = \dfrac{{\sqrt 6 }}{2}\)

    Ta có \(SA \bot BC;AD \bot BC \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot MD\)  nên \({S_{\Delta MBC}} = \dfrac{1}{2}.MD.BC = \dfrac{1}{2}.\dfrac{{\sqrt 6 }}{2}.2 = \dfrac{{\sqrt 6 }}{2}\)

    \({V_{S.MBC}} = \dfrac{1}{3}.SM.{S_{\Delta MBC}} = \dfrac{1}{3}.\dfrac{1}{{\sqrt 6 }}.\dfrac{{\sqrt 6 }}{2} = \dfrac{1}{6}.\)

    Ta có \(\dfrac{{{V_{S.MBC}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SB}}{{SB}}.\dfrac{{SC}}{{SC}} = \dfrac{1}{4} \Leftrightarrow {V_{S.ABC}} = 4V = 4.\dfrac{1}{6} = \dfrac{2}{3}.\)

    Chọn A

    ATNETWORK

Mã câu hỏi: 359623

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON