YOMEDIA
NONE
  • Câu hỏi:

    Biết \({\log _2}\left( {\sum\limits_{k = 1}^{100} {\left( {k \times {2^k}} \right)}  - 2} \right) = a + {\log _c}b\) với \(a\),\(b\),\(c\) là các số nguyên và \(a > b > c > 1\). Tổng \(a + b + c\) là 

    • A. 203
    • B. 202
    • C. 201
    • D. 200

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \(M = \sum\limits_{k = 1}^{100} {\left( {k{{.2}^k}} \right) - 2 = {{1.2}^1} + {{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}} - 2} \) \( = {2.2^2} + {3.2^3} + ... + {100.2^{100}}\)

    Suy ra \(2M = 2.\left( {{{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}}} \right) \) \(= {2.2^3} + {3.2^4} + {4.2^5} + ... + {100.2^{101}}\)

    Suy ra \(M = 2M - M \) \(= {2.2^3} + {3.2^4} + ... + {100.2^{101}} - \left( {{{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}}} \right)\)

    \( = {100.2^{101}} - {2^3} - {2^3} - {2^4} - {2^5} - ... - {2^{100}} \) \(= {100.2^{101}} - \left( {{2^3} + {2^4} + {2^5} + ... + {2^{100}}} \right) - {2^3}\)

    Xét tổng \({2^3} + {2^4} + ... + {2^{100}}\)  là tổng của \(98\) số hạng của cấp số nhân có \({u_1} = {2^3}\) và công bội \(q = 2.\)

    Nên \({2^3} + {2^4} + ... + {2^{100}} = {2^3}.\dfrac{{1 - {2^{98}}}}{{1 - 2}} = {2^{101}} - {2^3}\)

    Suy ra \(M = {100.2^{101}} - \left( {{2^{101}} - {2^3}} \right) - {2^3} \) \(= {99.2^{101}}\)

    Từ đó \({\log _2}\left( {{{99.2}^{101}}} \right) \) \(= {\log _2}99 + {\log _2}{2^{101}} \) \(= 101 + {\log _2}99\) \( \Rightarrow a = 101;b = 99;c = 2 \Rightarrow a + b + c = 202.\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 359625

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON