YOMEDIA
NONE
  • Câu hỏi:

    Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \frac{{x + {m^2} + 2m}}{{x - 2}}\) trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để \(A + B = \frac{{19}}{2}\)

    • A. \(m = 1;m =  - 3\)
    • B. \(m =  - 1;m = 3\)
    • C. \(m =  \pm 3\)
    • D. m = - 4

    Lời giải tham khảo:

    Đáp án đúng: A

    TXĐ: \(D = R\backslash \left\{ 2 \right\}\) . Ta có: \(y' = \frac{{ - 2.1 - 1.({m^2} + 2m)}}{{{{(x - 2)}^2}}} = \frac{{ - {m^2} - 2m - 2}}{{{{(x - 2)}^2}}} = \frac{{ - {{(m + 1)}^2} - 1}}{{{{(x - 2)}^2}}} < 0\forall x \in D\)

    \( \Rightarrow y' < 0\forall x \in \left[ {3;4} \right] \Rightarrow \) Hàm số đã cho nghịch biến trên [3;4]

    \(\begin{array}{l}
     \Rightarrow \mathop {\min }\limits_{\left[ {3;4} \right]} y = y(4) = \frac{{{m^2} + 2m + 4}}{2};\mathop {{\rm{max}}}\limits_{\left[ {3;4} \right]} y = y(3) = {m^2} + 2m + 3\\
     \Rightarrow A = \frac{{{m^2} + 2m + 4}}{2};B = {m^2} + 2m + 3
    \end{array}\)

    Theo bài ra ta có \(A + B = \frac{{19}}{2} \Leftrightarrow \frac{{{m^2} + 2m + 4}}{2} + {m^2} + 2m + 3 = \frac{{19}}{2}\)

     \( \Leftrightarrow \frac{{{m^2} + 2m + 4 + 2{m^2} + 4m + 6}}{2} = \frac{{19}}{2} \Leftrightarrow 3{m^2} + 6m - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}
    m = 1\\
    m =  - 3
    \end{array} \right.\)

    ATNETWORK

Mã câu hỏi: 66040

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON