YOMEDIA
NONE
  • Câu hỏi:

    Cho hai hàm số \(y = {x^3} + a{x^2} + bx + c\left( {a,b,c \in R} \right)\) có đồ thị (C) và \(y = m{x^2} + nx + p\left( {m,n,p \in R} \right)\) có đồ thị (P) như hình vẽ. Diện tích hình phẳng giới hạn bởi (C) và (P) có giá trị nằm trong khoảng nào sau đây?

    • A. (0;1)
    • B. (1;2)
    • C. (2;3)
    • D. (3;4)

    Lời giải tham khảo:

    Đáp án đúng: B

    Phương trình hoành độ giao điểm của (C) và (P) là \({x^3} + a{x^2} + bx + c = m{x^2} + nx + p\) 

    \( \Leftrightarrow {x^3} + \left( {a - m} \right){x^2} + \left( {b - n} \right)x + c - p = 0(*)\) 

    Dựa vào đồ thị ta thấy hai đồ thị hàm số tiếp xúc nhau tại điểm có hoành độ x = - 1 và cắt nhau tại điểm có hoành độ x = 1 nên phương trình (*) có nghiệm x = - 1 (bội 2) và x = 1 (nghiệm đơn).

    Viết lại (*) ta được \({\left( {x + 1} \right)^2}\left( {x - 1} \right) = 0\) 

    Vậy \(S = \int\limits_{ - 1}^1 {\left| {{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)} \right|dx}  = \int\limits_{ - 1}^1 {{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)dx}  = \frac{4}{3} \in \left( {1;2} \right)\) 

    ATNETWORK

Mã câu hỏi: 89410

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON