Phần hướng dẫn giải bài tập SGK Toán 9 Bài 9 Căn bậc ba sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các dạng bài tập từ SGK Toán 9 Tập một.
-
Bài tập 67 trang 36 SGK Toán 9 Tập 1
Hãy tìm
\(\sqrt[3]{512}; \sqrt[3]{-729}; \sqrt[3]{0,064}, \sqrt[3]{-0,216}; \sqrt[3]{-0,008}\)
-
Bài tập 68 trang 36 SGK Toán 9 Tập 1
Tính
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
b) \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
-
Bài tập 69 trang 36 SGK Toán 9 Tập 1
So sánh
a) \(5\) và \(\sqrt[3]{123}\)
b) \(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\) -
Bài tập 88 trang 20 SBT Toán 9 Tập 1
Tính (không dùng bảng số hay máy tính bỏ túi):
\(\root 3 \of { - 343} \); \(\root 3 \of {0,027} \); \(\root 3 \of {1,331} \); \(\root 3 \of { - 0,512} \)
-
Bài tập 89 trang 20 SBT Toán 9 Tập 1
Tìm x, biết:
a) \(\root 3 \of x = - 1,5\)
b) \(\root 3 \of {x - 5} = 0,9\)
-
Bài tập 90 trang 20 SBT Toán 9 Tập 1
Chứng minh các bất đẳng thức sau:
a) \(\root 3 \of {{a^3}b} = a\root 3 \of b \)
b) \(\root 3 \of {{a \over {{b^2}}}} = {1 \over b}\root 3 \of {ab} \) (\(b \ne 0)\))
-
Bài tập 91 trang 20 SBT Toán 9 Tập 1
Tìm giá trị gần đúng của căn bậc ba mỗi số sau bằng bảng lập phương và kiểm tra bằng máy tính bỏ túi (làm tròn đến chữ số thập phân thứ ba):
a. 12
b. 25,3
c. -37,91
d. -0,08
-
Bài tập 92 trang 20 SBT Toán 9 Tập 1
So sánh (không dùng bảng tính hay máy tính bỏ túi):
a) \(2\root 3 \of 3 \) và \(\root 3 \of {23} \)
b) 33 và \(3\root 3 \of {1333} \)
-
Bài tập 93 trang 20 SBT Toán 9 Tập 1
Tìm tập hợp các giá trị x thỏa mãn điều kiện sau và biểu diễn tập hợp đó trên trục số:
a) \(\root 3 \of x \ge 2\);
b) \(\root 3 \of x \le - 1,5\).
-
Bài tập 94 trang 20 SBT Toán 9 Tập 1
Chứng minh:
\({x^3} + {y^3} + {z^3} - 3xyz = {1 \over 2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right]\)
Từ đó chứng tỏ:
a) Với ba số x, y, z không âm thì \({{{x^3} + {y^3} + {z^3}} \over 3} \ge xyz\)
b) Với ba số a, b, c không âm thì \({{a + b + c} \over 3} \ge \root 3 \of {abc} \) (Bất đẳng thức Cô-si cho ba số không âm).
Dấu đẳng thức xảy ra khi ba số a, b, c bằng nhau.
-
Bài tập 95 trang 21 SBT Toán 9 Tập 1
Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh:
a) Trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.
b) Trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.