YOMEDIA
NONE

Bài tập 28 trang 9 SBT Toán 9 Tập 1

Giải bài 28 tr 9 sách BT Toán lớp 9 Tập 1

So sánh (không dùng bảng số hoặc máy tính bỏ túi):

a) \(\sqrt 2  + \sqrt 3 \) và \(\sqrt {10} \);

b) \(\sqrt 3  + 2\) và \(\sqrt 2  + \sqrt 6 \);

c) 16 và \(\sqrt {15} .\sqrt {17} \);

d) 8 và \(\sqrt {15}  + \sqrt {17} \).

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Áp dụng tính chất: Với \(a > 0,b > 0\) và \({a^2} < {b^2}\) thì \(a < b\)

Để chứng minh \(a < b\) ( với \(a > 0,b > 0\)) ta chứng minh \({a^2} < {b^2}\).

Chú ý: \({\left( {\sqrt A } \right)^2} = A\) ( với \(A > 0\)).

Áp dụng hằng đẳng thức:

\({(a + b)^2} = {a^2} + 2ab + {b^2}\)

Lời giải chi tiết

a)  \(\sqrt 2  + \sqrt 3 \) và \(\sqrt {10} \)

Ta có:

\(\eqalign{
& {\left( {\sqrt 2 + \sqrt 3 } \right)^2} = 2 + 2\sqrt 6 + 3 \cr 
& = 5 + 2\sqrt 6 \cr} \)

\({\left( {\sqrt {10} } \right)^2} = 10 = 5 + 5\)

So sánh \(2\sqrt 6 \) và 5:

Ta có: \({\left( {2\sqrt 6 } \right)^2} = {2^2}.{\left( {\sqrt 6 } \right)^2} = 4.6 = 24\)

\({5^2} = 25\)

Vì \({\left( {2\sqrt 6 } \right)^2} < {5^2}\) nên \(2\sqrt 6  < 5\)

Vậy: 

\(\eqalign{
& 5 + 2\sqrt 6 < 5 + 5 \cr 
& \Rightarrow {\left( {\sqrt 2 + \sqrt 3 } \right)^2} < {\left( {\sqrt {10} } \right)^2} \cr 
& \Rightarrow \sqrt 2 + \sqrt 3 < \sqrt {10} \cr} \)

b) \(\sqrt 3  + 2\) và \(\sqrt 2  + \sqrt 6 \)

Ta có:

\({\left( {\sqrt 3  + 2} \right)^2} = 3 + 4\sqrt 3  + 4 = 7 + 4\sqrt 3 \)

\(\eqalign{
& {\left( {\sqrt 2 + \sqrt 6 } \right)^2} = 2 + 2\sqrt {12} + 6 \cr 
& = 8 + 2\sqrt {4.3} = 8 + 2.\sqrt 4 .\sqrt 3 = 8 + 4\sqrt 3 \cr} \)

Vì \(7 + 4\sqrt 3  < 8 + 4\sqrt 3 \) nên \({\left( {\sqrt 3  + 2} \right)^2} < {\left( {\sqrt 2  + \sqrt 6 } \right)^2}\)

Vậy \(\sqrt 3  + 2\) < \(\sqrt 2  + \sqrt 6 \)

c) 16 và \(\sqrt {15} .\sqrt {17} \)

Ta có:

\(\eqalign{
& \sqrt {15} .\sqrt {17} = \sqrt {16 - 1} .\sqrt {16 + 1} \cr 
& = \sqrt {(16 - 1)(16 + 1)} = \sqrt {{{16}^2} - 1} \cr} \)

\(16 = \sqrt {{{16}^2}} \)

Vì \(\sqrt {{{16}^2} - 1}  < \sqrt {{{16}^2}} \) nên \(16 > \sqrt {15} .\sqrt {17} \)

Vậy \(16 > \sqrt {15} .\sqrt {17} \).

d) 8 và \(\sqrt {15}  + \sqrt {17} \)

Ta có: \({8^2} = 64 = 32 + 32\)

\(\eqalign{
& {\left( {\sqrt {15} + \sqrt {17} } \right)^2} = 15 + 2\sqrt {15.17} + 17 \cr 
& = 32 + 2\sqrt {15.17} \cr} \)

So sánh 16 và \(\sqrt {15.17} \)

Ta có: 

\(\eqalign{
& \sqrt {15.17} = \sqrt {(16 - 1)(16 + 1)} \cr 
& = \sqrt {{{16}^2} - 1} < \sqrt {{{16}^2}} \cr} \)

Vì \(16 > \sqrt {15.17} \) nên \(32 > 2\sqrt {15.17} \)

Suy ra:

\(\eqalign{
& 64 > 32 + 32 + 2.\sqrt {15.17} \cr 
& \Rightarrow {8^2} > {\left( {\sqrt {15} + \sqrt {17} } \right)^2} \cr} \)

Vậy \(8 > \sqrt {15}  + \sqrt {17} \).

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 28 trang 9 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON