YOMEDIA
NONE

Bài tập 18 trang 159 SBT Toán 9 Tập 1

Giải bài 18 tr 159 sách BT Toán lớp 9 Tập 1

Cho đường tròn (O) có bán kính \(OA = 3cm\). Dây \(BC\) của đường tròn vuông góc với \(OA\) tại trung điểm của \(OA.\) Tính độ dài \(BC\). 

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

+) Áp dụng định lý Pytago vào tam giác \(ABC\) vuông tại \(A\): \(A{B^2} + A{C^2} = B{C^2}\)

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Lời giải chi tiết

Gọi \(I\) là trung điểm của \(OA\)

Suy ra: \(IO = IA = \dfrac{1 }{ 2}OA = \dfrac{3 }{ 2}\)

Ta có: \(BC ⊥ OA\) (gt)

Suy ra:   \(\widehat {OIB} = 90^\circ \)

Áp dụng định lí Pytago vào tam giác vuông OIB ta có: \(O{B^2} = B{I^2} + I{O^2}\)

Suy ra: \(B{I^2} = O{B^2} - I{O^2}\)

\(={3^2} - {\left( {\dfrac{3 }{ 2}} \right)^2} = 9 - \dfrac{9 }{ 4} = \dfrac{{27}}{ 4}\)

\(BI =\dfrac{{3\sqrt 3 }}{ 2}\) (cm)

Xét đường tròn (O) có \(OA\bot BC\) tại I nên \(BI = CI\) (đường kính vuông góc với dây cung thì đi qua trung điểm của dây đó)

Suy ra: \(BC = 2BI=2.\dfrac{{3\sqrt 3 }}{2} = 3\sqrt 3 \) (cm)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 18 trang 159 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON