Nội dung bài học sẽ giới thiệu đền các em khái niệm Số thực và các vấn đề liên quan. Cùng với những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung bài học.
Tóm tắt lý thuyết
1.1. Số thực
- Số hữu tỉ và số vô tỉ được gọi chung là số thực.
- Tập hợp các số thức được kí hiệu là R.
1.2. So sánh số thực
- Với hai số thực bất kì x, y ta luôn so sánh được: hoặc x < y hoặc x > y, hoặc x = y.
- Khi so sánh thực hành tính toán với các số thực, ta thường thực hiện trên các số hữu tỉ gần đúng của chúng với độ chính xác tuỳ theo cầu quy định.
1.3. Trục số thực
- Chỉ số tập hợp số thực mới lấp đầy trục số.
- Mỗi số thực được biểu diễn bởi một điểm trên trục số.
- Ngược lại, mỗi điểm trên trục số đều biểu diễn một số thực.
Chú ý: Trong tập hợp các số thực cũng có các phép toán với các tính chất tương tự như các phép toán trong tập hợp các số hữu tỉ.
Ví dụ 1:
So sánh các số thực:
a. 3,737373… và 3,767676…
b. -0,1845 và -0,184184
c. 7,315315…và 7,325316
Hướng dẫn giải:
a. 3,737373… < 3,767676…
b. -0,184184 > -0,1845
c. 7,315315 < 7,325316
Ví dụ 2:
Tính bằng cách hợp lý
a. \(A = ( - 87,5) - \left\{ {( + 87,5) + {\rm{[}}3,8 + ( - 0,8){\rm{]}}} \right\}\)
b. \(B = \left[ {9,5 + ( - 13)} \right] + \left[ {( - 5) + 8,5} \right]\)
c. \(C = ( - 5,85) + \left\{ {\left[ {41,3 + ( - 5)} \right] + 0,85} \right\}\)
Hướng dẫn giải:
a. \(A = \left[ {(87,5) - 87,5} \right] + \left[ {3,8 + ( - 0,8)} \right] = 3\)
b. \(B = (9,5 + 8,5) + \left[ {( - 13) + ( - 5)} \right] = 18 + ( - 18) = 0\)
c. \(\begin{array}{l}C = ( - 5,85) + 41,3 + ( - 5) + 0,85\\ = \left[ {( - 5,85) + 0,85} \right] + ( - 5) + 41,3\\ = \left[ {( - 5) + ( - 5)} \right] + 41,3\\ = ( - 10) + 41,3 = 31,3\end{array}\)
Ví dụ 3:
So sánh các số thực:
a. 0,123 và 0,(123).
b. 0,(01) và 0,010010001.
HƯớng dẫn giải:
a. Vì 0,(123) = 0,123123
Nên 0,(123) > 0,123…
b. Vì 0,(01) = 0,010101…
Nên 0,(01) > 0,010010001
Bài tập minh họa
Bài 1:
Sắp xếp các số thực sau theo thứ tự từ lớn đến nhỏ:
\( - 3; - 1,7;\sqrt 5 ;0;\pi ;5\frac{3}{6};\frac{{22}}{7}\)
Hướng dẫn giải:
\(5\frac{3}{6} > \frac{{22}}{7} > \pi > \sqrt 5 > 0 > - 1,7 > - 3\).
Bài 2:
Tìm x biết:
a. \({x^2} = 49\)
b. \({(x - 1)^2} = 1\frac{9}{{16}}\)
Hướng dẫn giải:
a. \({x^2} = 49 \Rightarrow {x^2} = {7^2} \Rightarrow x = - 7;7\)
b. \(\begin{array}{l}{(x - 1)^2} = 1\frac{9}{{16}} \Rightarrow {(x - 1)^2} = \frac{{25}}{{16}} = {\left( {\frac{5}{4}} \right)^2}\\ \Rightarrow x - 1 = \frac{5}{4};x - 1 = - \frac{5}{4}\\ \Rightarrow x = \frac{9}{4};x = - \frac{1}{4}\end{array}\).
Bài 3:
So sánh \(\sqrt {37} - \sqrt {14} \) và \(6 - \sqrt {15} \)
Hướng dẫn giải:
Ta có \(\sqrt {37} > \sqrt {36} = 6\)
\(\sqrt {14} < \sqrt {15} \)
Do đó \(\sqrt {37} - \sqrt {14} > \sqrt {36} - \sqrt {15} \)
Vậy \(\sqrt {37} - \sqrt {14} > 6 - \sqrt {15} \).
3. Luyện tập Bài 12 Toán 7 tập 1
Qua bài giảng Số thực này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
- Định nghĩa số thực
- So sánh hai số thực
- Biểu diễn số thực trên trục số
3.1 Trắc nghiệm về Số thực
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 12 cực hay có đáp án và lời giải chi tiết.
-
Câu 1:
Chọn phát biểu sai:
- A. Tập hợp số thực được kí hiệu là R
- B. Số hữu tỉ là số thực, số vô tỉ không phải là số thực
- C. Mỗi số thực được biểu diễn bởi một điểm trên trục số
- D. Chỉ có số thực mới lấp đầy trục số
-
Câu 2:
So sánh 0,234 và 0,(234)
- A. 0,234=0,(234)
- B. 0,234>0,(234)
- C. 0,234<0,(234)
- D. Không so sánh được
Câu 3-5: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK về Số thực
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 12 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 87 trang 44 SGK Toán 7 Tập 1
Bài tập 88 trang 44 SGK Toán 7 Tập 1
Bài tập 89 trang 45 SGK Toán 7 Tập 1
Bài tập 90 trang 45 SGK Toán 7 Tập 1
Bài tập 91 trang 45 SGK Toán 7 Tập 1
Bài tập 92 trang 45 SGK Toán 7 Tập 1
Bài tập 93 trang 45 SGK Toán 7 Tập 1
Bài tập 94 trang 45 SGK Toán 7 Tập 1
Bài tập 95 trang 45 SGK Toán 7 Tập 1
Bài tập 117 trang 30 SBT Toán 7 Tập 1
Bài tập 118 trang 30 SBT Toán 7 Tập 1
Bài tập 119 trang 30 SBT Toán 7 Tập 1
Bài tập 120 trang 30 SBT Toán 7 Tập 1
Bài tập 121 trang 31 SBT Toán 7 Tập 1
Bài tập 122 trang 31 SBT Toán 7 Tập 1
Bài tập 123 trang 31 SBT Toán 7 Tập 1
Bài tập 124 trang 31 SBT Toán 7 Tập 1
Bài tập 125 trang 31 SBT Toán 7 Tập 1
Bài tập 126 trang 31 SBT Toán 7 Tập 1
Bài tập 127 trang 31 SBT Toán 7 Tập 1
Bài tập 128 trang 31 SBT Toán 7 Tập 1
Bài tập 129 trang 31 SBT Toán 7 Tập 1
Bài tập 12.1 trang 32 SBT Toán 7 Tập 1
Bài tập 12.2 trang 32 SBT Toán 7 Tập 1
Bài tập 12.3 trang 32 SBT Toán 7 Tập 1
Bài tập 12.4 trang 32 SBT Toán 7 Tập 1
Bài tập 12.5 trang 32 SBT Toán 7 Tập 1
Bài tập 12.6 trang 32 SBT Toán 7 Tập 1
4. Hỏi đáp Bài 12 Chương 1 Đại số 7 tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 7 HỌC247