YOMEDIA
NONE

Hoạt động khám phá 1 trang 66 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 1 trang 66 SGK Toán 10 Chân trời sáng tạo tập 1

a) Cho tam giác ABC không phải là tam giác vuông với góc A nhọn và \(\widehat C \ge \widehat B.\) Vẽ đường cao CD và đặt tên các độ dài như trong Hình 1.

 

Hãy thay ? bằng các chữ cáu thích hợp để chứng minh công thức \({a^2} = {b^2} + {c^2} - 2bc\cos A\) theo gợi ý sau:

Xét tam giác vuông BCD, ta có: \({a^2} = {d^2} + {(c - x)^2} = {d^2} + {x^2} + {c^2} - 2xc\)    (1)

Xét tam giác vuông ACD, ta có: \({b^2} = {d^2} + {x^2} \Rightarrow {d^2} = {b^2} - {x^2}\)    (2)

\(\cos A = \frac{?}{b} \Rightarrow ? = b\cos A.\)     (3)                   

Thay (2) và (3) vào (1), ta có: \({a^2} = {b^2} + {c^2} - 2bc\cos A\)

Lưu ý: Nếu \(\widehat B > \widehat C\) thì ta vẽ đường cao BD và chứng minh tương tự.

b) Cho tam giác ABC với góc A tù. Làm tương tự như trên, chứng minh rằng ta cũng có:

\({a^2} = {b^2} + {c^2} - 2bc\cos A\)

 

Lưu ý: Vì A là góc tù nên \(\cos A =  - \frac{x}{b}.\)

c) Cho tam giác ABC vuông tại A. Hãy chứng tỏ coogn thức \({a^2} = {b^2} + {c^2} - 2bc\cos A\) có thể viết là \({a^2} = {b^2} + {c^2}.\)

ATNETWORK

Hướng dẫn giải chi tiết Hoạt động khám phá 1

Phương pháp giải

Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\) 

Lời giải chi tiết

a) ? = x vì \(\cos A = \frac{{AD}}{{AC}} = \frac{x}{b} \Rightarrow ? = x.\)

b) Xét tam giác vuông BCD, ta có: \({a^2} = {d^2} + {(c + x)^2} = {d^2} + {x^2} + {c^2} + 2xc\)          (1)

Xét tam giác vuông ACD, ta có: \({b^2} = {d^2} + {x^2} \Rightarrow {d^2} = {b^2} - {x^2}\)    (2)

\(\cos A =  - \cos \widehat {DAC} =  - \frac{x}{b} \Rightarrow x =  - b\cos A.\)    (3)         

Thay (2) và (3) vào (1), ta có: \({a^2} = {b^2} + {c^2} - 2bc\cos A\)

c) Ta có: \({a^2} = {b^2} + {c^2} - 2bc\cos A\)

Mà \(\widehat A = {90^o} \Rightarrow \cos A = \cos {90^o} = 0.\)

\( \Rightarrow {a^2} = {b^2} + {c^2}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động khám phá 1 trang 66 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Bài tập SGK khác

Hoạt động khởi động trang 65 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Thực hành 1 trang 67 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Vận dụng 1 trang 67 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 2 trang 67 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Thực hành 2 trang 69 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Vận dụng 2 trang 69 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 3 trang 70 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 4 trang 70 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Thực hành 3 trang 71 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Vận dụng 3 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 74 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 74 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON