Hoạt động khám phá 2 trang 67 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
a) Cho tam giác ABC không phải là tam giác vuông có \(BC = a,AC = b,AB = c\) và R là bán kính của đường trong ngoại tiếp tam giác đó. Vẽ đường kính BD.
i) Tính \(\sin \widehat {BDC}\) theo a và R.
ii) Tìm mối liên hệ giữa hai góc \(\widehat {BAC}\) và \(\widehat {BDC}\). Từ đó chứng minh rằng \(2R = \frac{a}{{\sin A}}.\)
b) Cho tam giác ABC với góc A vuông. Tính sinA và so sánh a với 2R để chứng tỏ ta vẫn có công thức \(2R = \frac{a}{{\sin A}}.\)
Hướng dẫn giải chi tiết Hoạt động khám phá 2
Phương pháp giải
Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)
(R là bán kính đường tròn ngoại tiếp tam giác ABC)
Lời giải chi tiết
a) Tam giác BDC vuông tại C nên \(\sin \widehat {BDC} = \frac{{BC}}{{BD}} = \frac{a}{{2R}}.\)
b)
TH1: Tam giác ABC có góc A nhọn
\(\widehat {BAC} = \widehat {BDC}\) do cùng chắn cung nhỏ BC.
\( \Rightarrow \sin \widehat {BAC} = \sin \widehat {BDC} = \frac{a}{{2R}}.\)
TH2: Tam giác ABC có góc A tù
\(\widehat {BAC} + \widehat {BDC} = {180^o}\) do ABDC là tứ giác nội tiếp (O).
\( \Rightarrow \sin \widehat {BAC} = \sin ({180^o} - \widehat {BAC}) = \sin \widehat {BDC} = \frac{a}{{2R}}.\)
Vậy với góc A nhọn hay tù ta đều có \(2R = \frac{a}{{\sin A}}.\)
b) Nếu tam giác ABC vuông tại A thì BC là đường kính của (O).
Khi đó ta có: \(\sin A = \sin {90^o} = 1\) và \(a = BC = 2R\)
Do đó ta vẫn có công thức: \(2R = \frac{a}{{\sin A}}.\)
-- Mod Toán 10 HỌC247
-
Biến đổi thành tích biểu thức cho sau: \(1 - 2\sin x\)
bởi Bo Bo 29/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Thực hành 1 trang 67 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Vận dụng 1 trang 67 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 2 trang 69 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Vận dụng 2 trang 69 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 3 trang 70 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 4 trang 70 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 71 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Vận dụng 3 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 72 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 74 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 74 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST