Giải bài 6 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Cho tam giác ABC có \(AB = 6,AC = 8\) và \(\widehat A = {60^o}.\)
a) Tính diện tích tam giác ABC.
b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.
Hướng dẫn giải chi tiết Bài 6
Phương pháp giải
a) Tính diện tích bằng công thức: \(S = \frac{1}{2}bc\sin A\)
b) Tìm a, từ đó suy ra R bằng định lí sin => Tính diện tích tam giác IBC
Lời giải chi tiết
Đặt \(a = BC,b = AC,c = AB.\)
a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \)
b) Áp dụng định lí cosin cho tam giác ABC ta được:
\(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\)
Xét tam giác IBC ta có:
Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung)
\(IB = IC = R = \frac{a}{{\sin A}} = \frac{{2\sqrt {13} }}{{\frac{{\sqrt 3 }}{2}}} = \frac{{4\sqrt {39} }}{3}.\)
\( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{4\sqrt {39} }}{3}.\frac{{4\sqrt {39} }}{3}\sin {120^o} = \frac{{52\sqrt 3 }}{3}.\)
-- Mod Toán 10 HỌC247
-
Tính giá trị \(α\), biết: \(\cosα = 1\)
bởi Phan Thiện Hải 29/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 4 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 73 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 74 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 74 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 75 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST