Toán 10 Bài 3: Dấu của nhị thức bậc nhất


Nội dung bài học Dấu của nhị thức bậc nhất sẽ giới thiệu đến các em cách xét xem một biểu thức f(x) đã cho nhận giá trị âm ( hoặc dương) với những giá trị nào của x và phương pháp để giải bất phương trình tích, bất phương trình chứa ẩn ở mẫu thức, bất phương trình chứa ẩn trong dấu giá trị tuyệt đối

Tóm tắt lý thuyết

1.1. Định lý về dấu của nhị thức bậc nhất 

1.1.1. Nhị thức bậc nhất 

Nhị thức bậc nhất đối với x là biểu thức dạng ax + b, trong đó a và b là hai số cho trước, với a ≠ 0 và a được gọi là hệ số của x hay hệ số của nhị thức.

Ví dụ 1: \(f(x) = 2x - 3;{\rm{ }}g(x) = 1 - 5x\)

Ta đã biết, phương trình ax + b = 0 (a ≠ 0) có một nghiệm duy nhất \({x_0} =  - \frac{b}{a}\). Nghiệm đó cũng được gọi là nghiệm của nhị thức bậc nhất f(x) = ax + b. Nó có vai trò rất quan trọng trong việc xét dấu của nhị thức bậc nhất f(x).

1.1.2. Dấu của nhị thức bậc nhất

Định lý: Nhị thức bậc nhất f(x) = ax + b cùng dấu với hệ số a khi x lấy các giá trị trong khoảng \(\left( { - \frac{b}{a}; + \infty } \right)\) và trái dấu với hệ số a khi x lấy các giá trị trong khoảng \(\left( { - \infty ; - \frac{b}{a}} \right)\)

Kết quả của định lí trên được tóm tắt trong bảng sau:

Ta gọi bảng này là bảng xét dấu nhị thức f(x) = ax + b.

1.2. Xét dấu tích, thương các nhị thức bậc nhất 

Giả sử f(x) là một tích của những nhị thức bậc nhất. Áp dụng định lý vè dấu của nhị thức bậc nhất có thể xét dấu từng nhân tử. Lập bằng xét dấu chung cho tất cả các nhị thức bậc nhất có mặt trong f(x) ta suy ra được dấu của f(x. Trường hợp f(x) là một thương cũng được xét tương tự.

Ví dụ 2: Xét dấu biểu thức \(f(x) = \frac{{\left( {4x - 1} \right)\left( {x + 2} \right)}}{{ - 3x + 5}}\)

Hướng dẫn:

Giải các phương trình 

\(\begin{array}{l}
4x - 1 = 0 \Leftrightarrow x = \frac{1}{4}\\
x + 2 = 0 \Leftrightarrow x =  - 2\\
 - 3x + 5 = 0 \Leftrightarrow x = \frac{5}{3}
\end{array}\)

f(x) không xác định khi \(x = \frac{5}{3}\)

Lập bảng xét dấu chung 

Vậy f(x) > 0 khi \(x \in \left( { - \infty ; - 2} \right) \cup \left( {\frac{1}{4};\frac{5}{3}} \right)\)

f(x) < 0 khi \(x \in \left( { - 2;\frac{1}{4}} \right) \cup \left( {\frac{5}{3}; + \infty } \right)\)

f(x) = 0 khi x = -2 hoặc \(x = \frac{1}{4}\)

1.3. Áp dụng vào giải bất phương trình

Giải bất phương trình f(x) > 0 thực chất là xét xem biểu thức f(x) nhận giá trị dương với những giá trị nào của x (do đó cũng biết f(x) nhận giá trị âm với những giá trị nào của x), làm như vậy ta nói đã xét dấu biểu thức f(x).

1.3.1. Bất phương trình tích, bất phương trình chứa ẩn ở mẫu 

Ví dụ 3: Giải bất phương trình \(\frac{1}{{1 - x}} \ge 1\)

Hướng dẫn:

Ta biến đổi tương đương bất phương trình đã cho 

\(\frac{1}{{1 - x}} \ge 1 \Leftrightarrow \frac{1}{{1 - x}} - 1 \ge 0 \Leftrightarrow \frac{x}{{1 - x}} \ge 0\)

Xét dấu biểu thức \(f(x) = \frac{x}{{1 - x}}\) ta suy ra nghiệm của bất phương trình đã cho:

Vậy tập nghiệm của bất phương trình là \(S = \left[ {0;1} \right)\)

1.3.2. Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối 

Một trong những cách giải bất phương trình chứa ẩn trong dấu giá trị tuyệt đối là sử dụng định nghĩa để khử dấu giá trị tuyệt đối. Ta thường phải xét bất phương trình trong nhiều khoảng ( nửa khoảng, đoạn) khác nhau, trên đó các biểu thức nằm trong dấu giá trị tuyệt đối đều có dấu xác định.

Ví dụ 4: Giải bất phương trình |-2x+1|+x-3 < 5

Hướng dẫn:

Theo định nghĩa giá trị tuyệt đối ta có: 

\(\left| { - 2x + 1} \right| = \left\{ {\begin{array}{*{20}{l}}
{ - 2x + 1,x \ge \frac{1}{2}}\\
{ - \left( { - 2x + 1} \right),x < \frac{1}{2}}
\end{array}} \right.\)

Giải các hệ bất phương trình:

\(\begin{array}{l}
\left\{ \begin{array}{l}
x \le \frac{1}{2}\\
\left( { - 2x + 1} \right) + x - 3 < 5
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le \frac{1}{2}\\
x >  - 7
\end{array} \right. \Leftrightarrow  - 7 < x \le \frac{1}{2}\\
\left\{ \begin{array}{l}
x > \frac{1}{2}\\
\left( {2x - 1} \right) + x - 3 < 5
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > \frac{1}{2}\\
x < 3
\end{array} \right. \Leftrightarrow \frac{1}{2} < x < 3
\end{array}\)

Nghiệm của bất phương trình đã cho là hợp của hai khoảng:

\(\left( { - 7;\frac{1}{2}} \right] \cup \left( {\frac{1}{2};3} \right) = \left( { - 7;3} \right)\)

Kết luận: Bằng cách áp dụng tính chất của giá trị tuyệt đối ta có thể dễ dàng giải các bất phương trình dạng \(\left| {f(x)} \right| \le a\) và \(f(x) \ge a\) với a > 0 đã cho.

Ta có:

\(\left| {f(x)} \right| \le a \Leftrightarrow  - a \le f(x) \le a\)

\(f(x) \ge a \Leftrightarrow f(x) \le a \vee f(x) \ge a\)

Bài tập minh họa

Ví dụ 1: Xét dấu các nhị thức  \(f(x) = 2x - 3;{\rm{ }}g(x) = 1 - 5x\)

Hướng dẫn:

  • \(f(x) = 2x - 3\)

Hệ số a = 2 > 0 và có nghiệm là \({x_0} = \frac{3}{2}\)

Bảng xét dấu 

Vậy f(x) > 0 khi \({x} > \frac{3}{2}\); f(x) < 0 khi \({x} < \frac{3}{2}\)

  • \(g(x) = 1 - 5x\) 

Hệ số a = -5 < 0 và có nghiệm \({x_0} = \frac{1}{5}\)

Bảng xét dấu 

Vậy g(x) > 0 khi \({x} < \frac{1}{5}\); g(x) < 0 khi \({x} > \frac{1}{5}\); g(x) = 0 khi  \({x} = \frac{1}{5}\)

Ví dụ 2: Xét dấu biểu thức \(f(x) = \left( {2x - 1} \right)\left( { - x + 3} \right)\)

Hướng dẫn: 

Giải các phương trình 

\(\begin{array}{l}
\left( {2x - 1} \right) = 0 \Leftrightarrow x = \frac{1}{2}\\
\left( { - x + 3} \right) = 0 \Leftrightarrow x = 3
\end{array}\)

Lập bảng xét dấu chung 

Vậy f(x) > 0 khi \(x \in \left( {\frac{1}{2};3} \right)\)

f(x) < 0 khi \(x \in \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {3; + \infty } \right)\)

f(x) = 0 khi x = 1/2 hoặc x = 3

Ví dụ 3: Giải bất phương trình x- 4x < 0

Hướng dẫn: 

 \({x^3} - 4x < 0 \Leftrightarrow x\left( {{x^2} - 4} \right) < 0 \Leftrightarrow x\left( {x + 2} \right)\left( {x - 2} \right) < 0\)

Xét dấu biểu thức \(f(x) = x\left( {x + 2} \right)\left( {x - 2} \right)\)

Bảng xét dấu 

Vậy tập nghiệm của bất phương trình đã cho là \(S = \left( { - 2;0} \right) \cup \left( {2; + \infty } \right)\)

Ví dụ 4: Giải bất phương trình \(\frac{4}{{x - 1}} > \frac{7}{{2x + 1}}\)

Hướng dẫn:

\(\begin{array}{l}
\frac{4}{{x - 1}} > \frac{7}{{2x + 1}} \Leftrightarrow \frac{4}{{x - 1}} - \frac{7}{{2x + 1}} > 0\\
 \Leftrightarrow \frac{{4\left( {2x + 1} \right) - 7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {2x + 1} \right)}} > 0 \Leftrightarrow \frac{{x + 11}}{{\left( {x - 1} \right)\left( {2x + 1} \right)}} > 0
\end{array}\) (*)

Bảng xét dấu 

Từ bảng xét dấu trên ta suy ra tập nghiệm của bất phương trình (*) là:

\(S = \left( { - 11; - \frac{1}{2}} \right) \cup \left( {1; + \infty } \right)\)

Ví dụ 5: Giải bất phương trình \(\left| {3x + 2} \right| \le x + 1\)

Hướng dẫn:

\(\begin{array}{l}
\left| {3x + 2} \right| \le x + 1\\
 \Leftrightarrow \left\{ \begin{array}{l}
 - \left( {x + 1} \right) \le 3x + 2\\
x + 1 \ge 3x + 2
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
4x \ge  - 4\\
2x \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge  - 1\\
x \le 0
\end{array} \right. \Leftrightarrow  - 1 \le x \le 0
\end{array}\)

Vậy tập nghiệm của bất phương trình là \(S = \left[ { - 1;0} \right]\)

3. Luyện tập Bài 3 chương 4 đại số 10

Trong phạm vi bài học HỌC247 chỉ giới thiệu đến các em khái niệm cơ bản về Dấu của nhị thức bậc nhất và phương pháp để giải bất phương trình tích, bất phương trình chứa ẩn ở mẫu thức, bất phương trình chứa ẩn trong dấu giá trị tuyệt đối

3.1 Trắc nghiệm về dấu của nhị thức bậc nhất 

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 10 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Bất phương trình \(\sqrt { - {x^2} + 6x - 5} > 8 - 2x\) có nghiệm là: 

    • A. \(3 < x \le 5\)
    • B. \(2 < x \le 3\)
    • C. \( - 5 < x \le - 3\)
    • D. \( - 3 < x \le - 2\)
  • Câu 2:

    Bất phương trình: \(\sqrt {2x + 1} < 3 - x\) có nghiệm là:

    • A. \(\left[ { - \frac{1}{2};4 - 2\sqrt 2 } \right)\)
    • B. \(\left( {3;4 + 2\sqrt 2 } \right)\)
    • C. \(\left( {4 - 2\sqrt 2 ;3} \right)\)
    • D. \(\left( {4 + 2\sqrt 2 ; + \infty } \right)\)
  • Câu 3:

    Nghiệm của hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}} {2{x^2} - x - 6 \le 0}\\ {{x^3} + {x^2} - x - 1 \ge 0} \end{array}} \right.\) là:

    • A. \(-2 \le x \le 3\)
    • B. \(-1 \le x \le 3\)
    • C. \(\left[ \begin{array}{l} 1 \le x \le 2\\ x = -1 \end{array} \right.\)
    • D. \(1 \le x \le 2\)

Câu 4- Câu 9: Xem thêm phần trắc nghiệm để làm thử Online 

3.2. Bài tập SGK và Nâng Cao về dấu của nhị thức bậc nhất 

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 10 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Đại số 10 Cơ bản và Nâng cao.

Bài tập 1 trang 94 SGK Đại số 10

Bài tập 2 trang 94 SGK Đại số 10

Bài tập 3 trang 94 SGK Đại số 10

4. Hỏi đáp về bài 3 chương 4 đại số 10

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

  • Bài 27 (SBT trang 114)

    Xét dấu các biểu thức sau :

    \(f\left(x\right)=\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)

    Theo dõi (0) 1 Trả lời
  • Bài 28 (SBT trang 114)

    Xét dấu các biểu thức sau :

                   \(f\left(x\right)=\dfrac{2x+1}{\left(x-1\right)\left(x+2\right)}\)

    Theo dõi (0) 1 Trả lời
  • Bài 30 (SBT trang 114)

    Xét dấu các biểu thức sau :

                     \(f\left(x\right)=\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)

    Theo dõi (0) 1 Trả lời

-- Mod Toán Học 10 HỌC247

Được đề xuất cho bạn