YOMEDIA
NONE

Chứng minh rằng 4 điểm M,B,O,C cùng nằm trên 1 đường tròn

Cho đường tròn (O;R) (điểm O cố định, giá trị không đổi) và điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MB, MC (B,C là các tiếp điểm) của (O) và tia Mx nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đường kính BB' của (O). Qua O kẻ đường thẳng vuông góc với BB', đường thẳng này cắt MC và B'C lần lượt tại K và E. Chứng minh rằng:

1. 4 điểm M,B,O,C cùng nằm trên 1 đường tròn.

2. ME=R

3. Khi điểm M di động mà OM=2R thì điểm K di động trên một đường tròn cố định, chỉ rõ tâm và bán kính của đường tròn đó.

Làm giúp em câu 3 thôi ạ. Em cảm ơn trước ạ.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • dễ cái thứ nhất nhìn phát ra luôn cái thứ hai dựa vào tính chất của hình chữ nhật cái cuối thì tâm của nó là O còn bán kính là OK

      bởi võ hoàng giáp 13/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON