YOMEDIA
NONE

Chứng minh: Các số \(5\sqrt 2 \); \(5\sqrt 2 \) đều là số vô tỉ.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử \( \displaystyle5\sqrt 2 \) là số hữu tỉ, nghĩa là tồn tại số hữu tỉ \(a\) sao cho \( \displaystyle 5\sqrt 2  = a.\)

    Suy ra: \( \displaystyle\sqrt 2  = {a \over 5}\) hay \( \displaystyle\sqrt 2 \) là số hữu tỉ.

    Điều này vô lí vì \( \displaystyle\sqrt 2 \) là số vô tỉ (theo bài 52 trang 13 SBT toán 9 tập 1)

    Vậy \( \displaystyle5\sqrt 2 \) là số vô tỉ.

    *Giả sử \( \displaystyle3 + \sqrt 2 \) là số hữu tỉ, nghĩa là tồn tại một số hữu tỉ \(b\) mà: \( \displaystyle3 + \sqrt 2  = b\)

    Suy ra: \( \displaystyle\sqrt 2  = b - 3\) hay \( \displaystyle\sqrt 2 \) là số hữu tỉ.

    Điều này vô lí vì \( \displaystyle\sqrt 2 \) là số vô tỉ (theo bài 52 trang 13 SBT toán 9 tập 1)

    Vậy \( \displaystyle3 + \sqrt 2 \) là số vô tỉ.

      bởi Nguyễn Thị Trang 18/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON