YOMEDIA
NONE

Cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 3x + m - 1\). Tìm giá trị m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 9\)

Cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 3x + m - 1\). Tìm giá trị m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ \({x_1};{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 9\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét phương trình hoành độ giao điểm của Parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\):

    \(\begin{array}{l}{x^2} = 3x + m - 1\\ \Leftrightarrow {x^2} - 3x - m + 1 = 0\left( * \right)\end{array}\)

    Ta có: \(\Delta  = {\left( { - 3} \right)^2} - 4.1.\left( { - m + 1} \right)\) \( = 4m + 5\)

    Để \(\left( P \right)\) và \(\left( d \right)\) cắt nhau tại hai điểm phân biệt thì phương trình (*) có hai nghiệm phân biệt \({x_1},{x_2}\)

    \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \ne 0\left( {ld} \right)\\4m + 5 > 0\end{array} \right.\) \( \Leftrightarrow m >  - \dfrac{5}{4}\)

    Theo hệ thức Vi-et ta có:

    \(\left\{ \begin{array}{l}{x_1} + {x_2} = 3\\{x_1}{x_2} =  - m + 1\end{array} \right.\)

    Ta có: \({\left( {{x_1} + {x_2}} \right)^3}\) \( = x_1^3 + 3x_1^2{x_2} + 3{x_1}x_2^2 + x_2^3\)

    \( \Rightarrow x_1^3 + x_2^3\) \( = {\left( {{x_1} + {x_2}} \right)^3} - \left( {3x_1^2{x_2} + 3{x_1}x_2^2} \right)\)\( = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)\)

    Theo đề bài ta có:

     \(\begin{array}{l}x_1^3 + x_2^3 = 9\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 9\\ \Leftrightarrow {3^3} - 3\left( { - m + 1} \right).3 = 9\\ \Leftrightarrow 9m =  - 9\end{array}\)

    \( \Leftrightarrow m =  - 1\) (thỏa mãn)

    Vậy \(m =  - 1\) là giá trị cần tìm.

      bởi Dell dell 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON