YOMEDIA
NONE

Trong không gian Oxyz cho bốn điểm A(1;1;0), B(0;2;1), C(1;0;2), D(1;1;1). Hãy viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

Trong không gian Oxyz cho bốn điểm A(1;1;0), B(0;2;1), C(1;0;2), D(1;1;1). Hãy viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi I(x;y;z) là tâm mặt cầu ngoại tiếp tứ diện ABCD. Khi đó, ta có

    \( \left\{ \matrix{  I{A^2} = I{B^2} \hfill \cr  I{A^2} = I{C^2} \hfill \cr  I{A^2} = ID \hfill \cr}  \right.\) 

    \(  \Leftrightarrow \left\{ \matrix{   - 2x + 2y + 2z = 3 \hfill \cr   - 2y + 4z = 3 \hfill \cr  2z = 1 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x =  - {3 \over 2} \hfill \cr  y =  - {1 \over 2} \hfill \cr  z = {1 \over 2}. \hfill \cr}  \right.  \)

    Vậy tâm của mặt cầu ngoại tiếp tứ giác ABCD là \(I\left( { - {3 \over 2}; - {1 \over 2};{1 \over 2}} \right)\) và bán kính của mặt cầu đó là

    \(R = ID = \sqrt {{{\left( {{5 \over 2}} \right)}^2} + {{\left( {{3 \over 2}} \right)}^2} + {{\left( {{1 \over 2}} \right)}^2}}  = {{\sqrt {35} } \over 2}.\)

    Do đó, phương trình mặt cầu ngoại tiếp tứ diện ABCD là

    \({\left( {x + {3 \over 2}} \right)^2} + {\left( {y + {1 \over 2}} \right)^2} + {\left( {z - {1 \over 2}} \right)^2} = {{35} \over 4}.\)

      bởi Trịnh Lan Trinh 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON